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Gravitational lensing has seen a surge of interest in the past few years. The handful of strong
lensing systems known in the year 2000 has now been replaced with hundreds, thanks to
innovative multi-wavelength selection, and there is an imminent prospect of thousands of lenses
from Herschel and other sub-millimetre surveys. Euclid and the Square Kilometre Array
promise tens or even hundreds of thousands. Gravitational lensing is one of the very few probes
capable of mapping dark matter halo distributions. Lensing also provides independent
cosmological parameter estimates and enables the study of galaxy populations that are otherwise
too faint for detailed study. SALT is extremely well placed to have an enormous impact with
follow-up observations of foreground lenses and background sources from e.g. Herschel, the
South Pole Telescope, the Atacama Cosmology Telescope, Euclid and the Square Kilometre
Array. This paper reviews the prospects for high-impact SALT science and the many constraints
of galaxy evolution that can result. 
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1.  Introduction: the past of gravitational lensing 

1.1  A quick lensing primer

The gravitational deflection of light in general relativity was first correctly predicted a
century ago this year [1]. Figure 1 shows schematically how a background source can be
gravitational lensed by a foreground deflector. Lensing depends only on the foreground matter
distribution, and is independent of whether the foreground matter is luminous or dark, smooth or
clumpy, in equilibrium or not.

Figure 2 shows a simulated gravitationally lensed image. Apart from not being an
astronomical image, the simulation demonstrates many important features of gravitational
lensing in astronomy. Firstly, lensing conserves surface brightness (a consequence of lensing
conserving the phase space density of photons). Therefore, flux magnification is always
accompanied by angular magnification. Secondly, multiple images are possible, such as the two
mouths in the image, and as also indicated in Figure 1. Finally, some parts of a background
object may be more magnified than other parts, an effect known as differential magnification
(e.g. [2]). Gravitational lensing is purely geometrical, in that the photon paths do not depend on
the photon wavelengths, but if the background object has a foreground magnification gradient,
the observed colours of a lensed background object may not necessarily be representative of
how it would appear without lensing. This change in a background object's colour can happen
without any dust obscuration in the foreground lens, though extinction may also itself cause
colour changes.

Figure 1: Schematic representation of
strong gravitational lensing, showing the
deflected light paths from a background source
to the observer. Note that despite the term
`lensing', the images are not focussed in
general. Figure taken from [3]. 

Figure 2: A background (television) star,
gravitationally lensed by a transparent singular
isothermal sphere with a small shear component. 
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1.2   A quick run through previous gravitational lensing surveys

Historically, gravitational lenses have most commonly been discovered through
observations of candidate foreground objects. For example, Hubble Space Telescope (HST)
imaging of galaxy clusters has revealed many gravitational lens arcs, and lensing has been
discovered through HST follow-up imaging of Sloan Digital Sky Survey (SDSS) objects that
appear to have emission line spectra differing from their absorption lines.  

The advantage of selecting lenses in this way is that it has resulted in the largest published
compilations of lensing systems to date. For example, the Sloan Lens ACS Survey (SLACS) has
produced an impressive compilation of 131 lensing systems [4], and the Baryon Oscillation Sky
Survey Emission Line Lens Survey (BELLS) has detected dozens of lenses and candidate lenses
(e.g. [5]). The SLACS project yielded the surprise discovery of a double Einstein ring or
"jackpot" lens [6], with which one can constrain the dark matter density profile. Such systems
can only be discovered in large lensing compilations. The combination of weak and strong
lensing in the large SLACS sample also statistically constrains dark matter density profiles [7].
Meanwhile, cluster lensing has a long pedigree in making high-redshift populations accessible,
most recently in the HST Frontier Fields project. 

The principal disadvantage of discovering gravitational lens systems through studies of
plausible foreground deflectors is that it provides an unrepresentative sample of the objects
providing the optical depth to gravitational lensing. Largely for this reason, samples compiled in
this way are difficult to use for cosmography (e.g. [8], [9]), despite the enormous promise of
gravitational lensing for constraining cosmological parameters (e.g. [10]). 

2.   The present status of gravitational lensing: a selective review   

2.1   Finding gravitational lenses with submm and mm-wave surveys 

Submm-wave surveys have been strongly diagnostic of galaxy evolution models partly
because of the steep Rayleigh-Jeans tail of galaxies' dust emission in the submm, which leads to
a now-famous negative K-correction. Because of this negative K-correction, a galaxy at redshift
z~1 would be equally bright at the same observed submm wavelength at z~5 (e.g. [11]). The
Herschel Space Observatory, launched in 2009, made over a thousand-fold improvement in
submm survey mapping speed, revolutionizing extragalactic submm astronomy. In the course of
its four year lifetime, Herschel has mapped approximately 10% of the sky in the submm, mainly
as part of large legacy survey projects, such as: 

1. The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS, [12]): the largest
Herschel extragalactic survey with a catalogue of ~300,000 sources, and covering a
total of 550 deg2 in the North Galactic Pole (NGP), South Galactic Pole (SGP) and the
three equatorial Galaxy And Mass Assembly (GAMA) survey fields. Both the GAMA
and SGP fields are covered by the Visible and Infrared Survey Telescope for
Astronomy (VISTA) Kilo-degree Infrared Galaxy survey (VIKING, e.g. [13]). 

2. The Herschel Multi-Tiered Extragalactic Survey (HerMES, [14]), which mapped ~100
deg2 to a range of depths, from shallow tiers to ultra-deep confusion limited surveys,
covering the famous degree-scale multi-wavelength extragalactic survey fields (e.g.
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GOODS, XMM-LSS, ELAIS/SWIRE fields, Groth Strip, AKARI SEP, and
gravitational lensing clusters).

3. The HerMES Large Mode Survey (HELMS) covered 80 deg2 in the Stripe 82 SDSS
field [14]. 

4. The Herschel Stripe 82 Survey (HerS, [15]) extended the HELMS coverage in the
Stripe 82 field by a further 280 deg2. 

In parallel, the Atacama Cosmology Telescope (ACT, e.g. [16]) has been mapping the Southern
sky at wavelengths of 1.4mm and 2.1mm. Although primarily a CMB experiment, the facility
also detects infrared luminous galaxies as well as e.g. Sunyaev-Zeldovich clusters (e.g. [17]).
Over the next five years, ACT will match the source density of the H-ATLAS 500μm survey
over most of the Southern sky. 

Prior to Herschel's launch, several groups predicted that steep submm source counts,
together with the high redshifts of submm-selected galaxies (caused by the negative K-
corrections) lead to a strong gravitational magnification bias (e.g. [18], [19], [20], [21]).
Shallow, wide-area submm surveys could therefore be exploited as an extremely efficient means
of selecting strong lensing events, once the obvious contaminant populations of nearby galaxies
and blazars are removed. Traditional methods for finding lenses  include searching for high-z
emission lines superimposed on early-type spectra, used by the SLACS and BELLS surveys.
Unlike these projects, submm selection discovers lensing purely from its magnification and
irrespective of the nature of the magnifier (e.g. early-type galaxies, spirals, groups, clusters).
Moreover, the higher redshift background sources (again from the negative K-corrections) can
yield much higher redshift foreground lenses than e.g. optical lensing surveys such as SLACS,
making submm selection capable of probing the evolution of dark matter halos at much higher
redshifts.

In one of the major early milestones of Herschel, the lensing prediction was spectacularly
confirmed in the H-ATLAS project by [22]: of the first 11 sources with S(500μm)>100mJy, 5
were obvious local galaxies, one an obvious blazar, and the remaining 5 all strong lensing
systems. After removing the obvious contaminants the selection efficiency for strong lensing
systems in bright submm surveys approaches an astonishing ~100%. Simple selection on bright
submm fluxes yields ~100 lenses in H-ATLAS, but with more input information this increases
dramatically. With submm photo-z accurate to ~30% and calibrated from our CO redshifts in >
20 H-ATLAS galaxies, we can now be reasonably confident of identifying high source redshifts,
and use the steepness of the bright luminosity function as the source of magnification bias ([23],
[24]). [24] showed that many of the sources with submm colors indicative of high redshifts,
have high likelihood associations with K-band sources from the VIKING near-IR survey (<
10% probability by chance) consistent with much lower redshifts. Our models predict that of the
sources selected by (a) submm colours indicative of high redshift plus (b) apparent foreground
K-band ID, ~72 % are being strongly lensed (magnification factor μ > 2; [24]). Furthermore, the
discovery of the submm-selected gravitational lens populations has stimulated other creative
infrared lens detection methods. For example, [25] identified a population of submm-excess
galaxies in spectral energy distribution fits to the HerMES galaxies, exploiting the
comprehensive multi-wavelength data sets in the HerMES fields. These submm-excess galaxies
appear to be a background submm-bright galaxy being lensed by another foreground IR-
luminous galaxy. 
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These gravitational lens discoveries have already had an enormous impact. For example,
most are well-placed for ALMA follow-ups (e.g. [26]). Breakthrough ALMA early science data
proved that CO emission line redshifts of the background sources are extremely easy to obtain
(e.g. 74 to date from Herschel surveys alone), as well as clearly demonstrating the advantages
for exploiting high angular magnification of the background galaxies from gravitational lensing
[27]. This has been followed by a spectacular ALMA image of the z=3.042 H-ATLAS lensing
system SDP81 [28], from which CO kinematics reveals an unstable disk on 50−700kpc scales
and a star formation efficiency ~65× local values, and identifying five giant star forming regions
strikingly offset from local Larson relations possibly indicating a high pressure ISM (e.g. [29],
[30], [31]). 

Gravitational lensing also makes other emission line diagnostics accessible in submm-
selected galaxies (e.g. [32]), but there remains the problem of differential magnification (e.g.
[2], [33]). However, [34] came up with an ingenious solution: although the H2O lines detected
by the authors cannot be spatially resolved in lensed submm galaxies, their line profiles are
strikingly similar to selected CO transitions that can be resolved spatially, so the water emission
can be corrected for lensing. 

Finally, large samples of lenses selected purely on the basis of their magnification make
cosmographic constraints possible (for a known population of foreground lenses, e.g. [10]) or
constraints on dark matter halo populations (for a given cosmology, e.g. [35]). 

2.2   Following up foreground redshifts: a natural niche for SALT

While the background source redshifts are easily obtained through submm/mm-wave
spectra, the foreground gravitational lenses are unexpectedly much more challenging. This is
because they are frequently early-type galaxies requiring 10m-class absorption line redshifts, as
well as being at higher redshifts than all previous gravitational lens surveys. There is therefore a
bottleneck in foreground lens redshifts, which are nonetheless critical for much of the
gravitational lens modelling and interpretation.

I believe this is an ideal niche for SALT to occupy. The submm-selected gravitational
lenses are distributed all over the sky, so they would be ideal for the queue-scheduled operation
of SALT. Redshifts would also not require photometric conditions. Such a project would
strengthen the international impact of SALT as a facility, giving it a central role in a high-profile
international program. The new population of gravitational lenses is arguably the most
significant extragalactic discovery on Herschel, and is a major focus of activity in many
Herschel legacy survey consortia as well as the ACT. A redshift measurement programme on
SALT would generate a well-cited legacy data product that would place SALT at the center of a
surge of interest in lensing, and would have a long term legacy of enabling a very wide range of
further science, e.g.:

• Dark matter halo substructure evolution: this is a key test of structure formation models

(e.g. [36]), but there are difficulties in separating the foreground lens light from that of
the background galaxy, and in distinguishing dark matter substructure from differential
dust reddening in the lens. Here the background galaxy is mainly only detectable in the
submm/mm-wave completely avoiding these systematic errors (e.g. [31]). Moreover the
foreground lenses are detectable to much higher redshifts than purely optical lensing
surveys, probing substructure evolution at much higher redshifts.
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• The Initial Mass Function (IMF): by combining mass measurements from lensing with

population synthesis models of the lenses (using SALT spectra & follow-up spectra)
and velocity dispersions, the IMF can be constrained in lenses (e.g. [37]), already
suggesting Salpeter IMFs in z~0.1−0.2 spiral bulges but Chabrier IMFs in their disks
(e.g. [38]). With a large sample of lenses extending to much higher redshifts, a lens
redshift programme would enable e.g. 10m-class studies of the high-z IMF.

• Resolving the background sources in rare high-magnification events (e.g. μ>~100).

These rare systems are only discoverable in large lensing surveys. Lensing conserves
surface brightness so high flux magnification is also high angular magnification.
E-ELT, SKA and ALMA follow-ups would then resolve star formation on ~10pc scales
in a sample of galaxies distributed throughout almost the entire Hubble volume, helping
determine what causes the dramatic evolution in the demographics of star forming
galaxies (e.g. [39], et seq.).

• Discovery of rare 'jackpot' lenses, in which three co-aligned galaxies lead to double

Einstein rings (e.g. [6]). The two lines of sight probe the density profile in the nearest
lens, and at least one background galaxy will have an easily accessible redshift from
CO. Up to 1 in 40 systems are 'jackpot' lenses, providing an independent geometrical
measure of the dark energy equation of state.

Since this keynote presentation was given at the SALT conference in June 2015, the
Herschel extragalactic survey consortia have combined efforts on a long-term foreground lens
redshift programme on SALT (PI Stephen Serjeant, Project Scientist Lucia Marchetti),
extending previous SALT lens redshift programmes (PI Lerothodi Leeuw). The project opted
for long-term status rather than a Partnership Proposal because constituent consortia were not
able to guarantee to release targets to any and all people at any SALT institute (because this
would effectively constitute a public data release), but cordially invites people at SALT
institutions with lensing expertise to apply to be co-Is.

3. A golden future: Euclid and the Square Kilometre Array

The forthcoming 1.2m diffraction-limited Euclid space telescope will perform an imaging
and slitless spectroscopy survey of around half the sky at optical and near-infrared wavelengths
in order to measure the dark energy equation of state through baryon wiggles and weak lensing
[40]. A byproduct of this survey will be up to ~105 gravitationally lensed systems that can in
principle be discovered through their morphologies [40]. While it is easy in principle to create a
highly complete catalogue of strong lensing systems from the Euclid imaging, it is not at all
obvious how to make the sample reliable. False positives could for example be caused by arc-
like tidal tails in merging galaxies, or by random lensing-like locations of HII regions in a
galaxy. The size of the Euclid catalogue makes visual inspection of all the candidates a
formidable task. For this reason, arc-finder algorithms are being developed for multi-wavelength
imaging data (e.g. [41]). There is also a citizen science mass participation experiment to
discover gravitational lenses, Spacewarps [42].

However, a subset of Euclid lensing systems can be extracted highly reliably. The Hα
luminosities of star forming galaxies tend to plateau as star formation rate is increased, because
of increased dust obscuration, so it is reasonable to expect the bright end of the Hα galaxy
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luminosity function to be steeper than the bright end of the far-infrared galaxy luminosity
function. Hα observations already favour a Schechter function (e.g. [43]). The brightest Hα
emitters should therefore be prone to magnification bias in the same way that bright submm
galaxies are often lensed (e.g. [22]). [44] showed that by selecting Hα-emitting galaxies at
>12L*, Euclid will provide a sample of ~1000−3000 strongly lensed galaxies with 97%−99%
reliability, i.e. less than 3% unlensed contaminants. This is shown in Figure 3. The range in the
prediction comes from the range in assumed maximum magnifications of μmax=10 ̶−30
(corresponding to source physical sizes of 1-10h-1kpc), i.e. more lensing systems are
discoverable with larger maximum magnifications. These galaxies will already have the
background redshift known from the Hα line, so would be excellent targets for 10m-class
spectroscopy for the foreground lens with facilities such as SALT, as well as easy targets for Hα
and Paschen α imaging by the Thirty Metre Telescope or the European Extremely Large
Telescope. 

Figure 3: The top panels show the Hα luminosity function of [43] at three redshifts (black
line), with the Euclid wide survey limit shown as a vertical dashed line. The lensed population is
shown in the hatched areas, spanning maximum magnifications of 10 to 30. The blue hatched
area shows a non-evolving lens population described in [44], while the magenta hatched area is
the population model of [19] and [20]. The lower panels show the SKA predictions discussed in
the text, with the same symbols as the upper panels, and the SKA phase 2 dark energy survey
limit shown as a vertical dashed line. The curved dashed line is the semi-analytic prediction of
[46]. Figure adapted from [44].

The situation is better still with the advent of the Square Kilometre Array, as shown in
Figure 3. The neutral hydrogen mass function is expected to have a steep decline at the high
mass end, so surveys of HI-emitting galaxies with the SKA and pathfinder/precursor facilities
should be able to select gravitational lenses very efficiently. For example, [44] showed that
making a conservative assumption of an unevolving HI mass function, a fiducial 1-year dark
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energy survey with the full SKA would detect between 5800 and 14,000 reliable strong
gravitational lens systems at >12M*. As before, the range represents maximum magnifications
of μmax=10−30. If one instead assumes an evolving HI mass function, the effect of magnification
bias is enormously increased. With the mass function from [45], the lensing prediction ranges
from 7400 with an unevolving lens population and a maximum magnification of 10, to a
spectacular 190,000 lensing systems with the lens population of [19] and [20]. 

The SKA lenses, Euclid lenses and submm/mm-wave lenses all share the advantage that
the lens discovery is made purely on the basis of magnification, and irrespective of the nature of
the deflectors. These are therefore ideal ways for example to probe the lensing optical depth of
the Universe and to discover lenses at higher redshifts than would otherwise be accessible.
SALT will once again be a natural choice for lens redshift determination. 
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