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1. Introduction

There is overwhelming evidence from the lattice that the chiral symmetry group SU(N f )L×

SU(N f )R of the action of Quantum Chromodynamics (QCD) with a small number N f of massless

flavors breaks spontaneously to SU(N f )L+R. This progress became possible thanks to the steady

increase of the computer power made available to our community, and to the impressive algorithmic

and technical progress achieved over the last decade in the numerical simulation of lattice QCD

with light dynamical fermions [1, 2, 3, 4, 5].

The Gell-Mann-Oakes-Renner (GMOR) relation was beautifully observed in the very first

computations of this new generation of simulations already at finite lattice spacing [6, 7, 8, 9]. Lat-

tice results for ratios of low-lying eigenvalues of the Dirac operator in the ε regime turned out to be

in agreement with the parameter-free predictions of leading order (LO) Chiral perturbation theory

(ChPT) and random matrix theory [10]. By now it is standard practice to assume the presence

of spontaneous symmetry breaking in QCD, and fit phenomenologically interesting observables in

the quark mass by applying the predictions of chiral perturbation theory (ChPT) [11, 12, 13]. After

only 10 years from the first simulations with light quarks, we have many results in the N f = 2,

N f = 2+1 and N f = 2+1+1 theories with light quarks down to the physical point, or lattice spac-

ings as small as 0.05 fm [14, 15, 16, 17, 18]. There are many determinations of the QCD LO and

next-to-leading order (NLO) low-energy constants (LECs) obtained by comparing the predictions

of ChPT with lattice results, see Ref. [19] for a comprehensive review1.

Over the last decade we have also accumulated stronger and stronger evidence that the break-

ing due to the quantum anomaly of the U(1)L× U(1)R chiral group to U(1)L+R is driven by the

Witten–Veneziano mechanism [22, 23, 24]. After 10–15 years of exploratory computations with

cooling techniques, well summarized in Ref. [25], a theoretically well defined definition of the

cumulants of the topological charge was found [26, 27, 28, 29, 30, 31]. The value of the topo-

logical susceptibility obtained with the Neuberger definition of the charge [32] indeed supports the

Witten–Veneziano explanation for the large experimental value of the η ′ mass. To properly ver-

ify the mechanism, however, precise computations at large Nc with and without fermions are still

required.

In the past two years or so, there have been further substantial conceptual, technical and nu-

merical progress in our quantitative understanding of chiral symmetry breaking in QCD. It is the

aim of this talk to review these advances with particular emphasis on the recent precise computa-

tions of the spectral density of the Dirac operator in the continuum limit, and of the cumulants of

the topological charge distribution with and without fermions.

2. Spectral density of the Dirac operator

The spectral density of the Euclidean massless Dirac operator D is defined as [33, 34, 35]

ρ(λ ,m) =
1

V

∞

∑
k=1

〈δ (λ −λk)〉 , (2.1)

1New (preliminary) determinations of some of the LECs of the SU(2) and SU(3) chiral effective theories of QCD

with N f = 2 + 1 flavours which have reported at this conference [20, 21] quote errors significantly smaller than in

Ref. [19].
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where iλ1, iλ2, . . . are its (purely imaginary) eigenvalues, the bracket 〈. . .〉 denotes the QCD expec-

tation value, V is the volume of the system, and m is the quark mass. In QCD the density ρ(λ ,m)

is a renormalizable quantity which is unambiguously defined once the free parameters in the ac-

tion (coupling constant and quark masses) have been renormalized [36, 37]. The Banks–Casher

relation [33]

lim
λ→0

lim
m→0

lim
V→∞

ρ(λ ,m) =
Σ

π
(2.2)

links the density at the origin to the chiral condensate

Σ =−
1

2
lim
m→0

lim
V→∞

〈ψ̄ψ〉 , (2.3)

where ψ is the quark doublet. It can be read in either directions: a non-zero spectral density at the

origin implies that the symmetry is broken by a non-vanishing Σ and vice versa. The mode number

of the Dirac operator [36]

ν(Λ,m) =V

∫ Λ

−Λ
dλ ρ(λ ,m), (2.4)

turns out to be a renormalization-group invariant quantity as it stands. In presence of a non-zero

chiral condensate the modes condense near the origin, and the mode number grows linearly with

Λ. It can also be written as the average number of eigenmodes of the massive Hermitean operator

D†D+m2 with eigenvalues α ≤ M2 = Λ2 +m2. Its (normalized) discrete derivative

ρ̃(Λ1,Λ2,m) =
π

2V

ν(Λ2)−ν(Λ1)

Λ2 −Λ1

(2.5)

carries the same information as ρ(λ ,m), but this effective spectral density is a more convenient

quantity to consider in practice on the lattice.

2.1 Mode number on the lattice

On a discretized space-time and Wilson-type fermions, it is appropriate to define the mode

number directly as the average number of eigenmodes of the squared massive Hermitean Wilson-

Dirac operator D†
mDm with eigenvalues α ≤ M2. In the continuum limit this definition converges

to the universal one [36], with a rate proportional to a2 if non-perturbative O(a)-improved Wilson

or Wilson twisted-mass fermions are implemented [36, 38]. Since with those fermions chiral sym-

metry is explicitly broken at finite lattice spacing, the spectrum of the Wilson–Dirac operator near

threshold (Λ = 0) is not protected from large discretization effects [37, 39, 40]. While this region

may be of interest for studying the peculiar details of those fermions, it is easier to extract universal

information about the continuum theory far away from it. This is one of the reasons for considering

on the lattice the effective spectral density in Eq. (2.5).

2.2 Mode number in ChPT

When chiral symmetry is spontaneously broken, the mode number can be computed in the

chiral effective theory. At the NLO it reads [41, 42, 36, 43, 39, 44]

νnlo(Λ,m) =
2ΣΛV

π

{

1+
mΣ

(4π)2F4

[

3 l̄6 +1− ln(2)−3ln
( Σm

F2µ̄2

)

+ fν

(

Λ

m

)

]}

, (2.6)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
0
1

Recent progress on chiral symmetry breaking in QCD Leonardo Giusti

where

fν(x) = x
[

arctan(x)−
π

2

]

−
1

x
arctan(x)− ln(x)− ln(1+ x2) . (2.7)

The constants F and l̄6 are, respectively, the pion decay constant in the chiral limit and a SU(3|1)

low-energy effective coupling renormalized at the scale µ̄ . The formula in Eq. (2.6) has some

interesting properties:

• for x → ∞

fν(x)
x→∞
−−−→−3ln(x) , (2.8)

and therefore at fixed Λ the mode number has no chiral logarithms at the NLO when m → 0;

• since in the continuum the operator D†
mDm has a threshold at α = m2, the mode number must

satisfy

lim
Λ→0

νnlo(Λ,m) = 0 , (2.9)

a property which is inherited by the NLO ChPT formula;

• in the chiral limit νnlo(Λ,m)/Λ becomes independent on Λ. This is an accident of the N f = 2

ChPT theory at NLO [41];

• the Λ-dependence in the square brackets on the r.h.s. of Eq. (2.6) is parameter-free. Since

mΣ/(4πF2)2 > 0, the behaviour of the function fν(x) implies that νnlo(Λ,m)/Λ is a decreas-

ing function of (small) Λ at fixed (small) m.

At the NLO the effective spectral density ρ̃nlo inherits the same special properties of νnlo(Λ,m)/Λ:

at fixed Λ1 and Λ2 it has no chiral logarithms when m → 0, it is independent from Λ1 and Λ2 in the

chiral limit, and at non-zero quark mass it is a decreasing parameter-free function of 2 (Λ1+Λ2)/2.

For light values of the quark masses, i.e. 10 MeV or so, the variations are of the order of a few

percent in the range of Λ’s we are interested in. These special properties offer non-trivial tests that

the values of Λ and m chosen in the simulations are in a regime where NLO ChPT can be applied.

3. The spectral density in QCD Lite

In the last two years the spectral density of QCD with two light flavours has been computed

on a rich set of lattices with a statistical accuracy of a few percent [45, 46, 47]. The two groups

opted for different gluonic and fermionic regularizations. The authors of Ref. [45] implemented

the tree-level Symanzik improved gluon action and the Wilson twisted mass fermion action so

to be able to use the gauge configurations generated by the ETM Collaboration. They span the

parameter ranges3 a = 0.054–0.085, m = 16–47 MeV, and M = 50–120 MeV (corresponding to

approximatively Λ = 40–120 MeV). The authors of Refs. [46, 47] opted for the standard Wilson

gluonic action and the non-perturbatively O(a)-improved Wilson fermion action so to profit from

the generation of the gauge configurations carried out by the CLS community4 and the Alpha

2It is very weakly dependent on (Λ1 −Λ2) for pairs of values Λ1 and Λ2 that we will consider.
3If not explicitly stated, the scheme- and scale-dependent quantities such as Σ, m, Λ and ρ are renormalized in the

MS scheme at µ = 2 GeV.
4https://wiki-zeuthen.desy.de/CLS/CLS.
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Figure 1: Left: the mode number ν as a function of M for a = 0.085 fm and m = 21 MeV from Ref. [45];

the solid line is a linear fit to all 5 points. Right: the mode number as a function of Λ for a = 0.048 fm and

m= 12.9 MeV from Refs. [46, 47]; a quadratic fit of the data gives ν =−9.0(13)+2.07(7)Λ+0.0022(4)Λ2.

Courtesy of Refs. [45, 46, 47].

collaboration5 [48, 15]. The parameter ranges that they span are a = 0.048–0.075, m = 6–37 MeV,

and Λ = 20–500 MeV. In the left plot of Figure 1 the mode number is shown as a function of M

for a lattice with quark mass m = 21 MeV and spacing a = 0.085 fm from Ref. [45]. The right

plot in the same figure shows ν as a function of Λ for m = 12.9 MeV and a = 0.048 fm from

Ref. [46, 47], a plot which makes manifest that the mode number is a nearly linear function of Λ

up to approximatively 100–150 MeV. The modes do condense near the origin as predicted by the

Banks–Casher mechanism. At the percent precision, however, data show statistically significant

deviations from the linear behavior already below 100 MeV. Just to guide the eye, a quadratic fit in

Λ is shown in the left plot of Figure 1 where is represented the set of data with lighter quark masses

and which cover a wider range in Λ. The values of the coefficients, given in the caption, reveal

that the bulk of ν is given by the linear term, while the constant and the quadratic term represent

O(10%) corrections in the fitted range. This calls for a careful analysis of the systematics induced

by cutoff effects, finite quark mass and finite Λ values in order to reach a precise determination of

the spectral density in the continuum and chiral limits at the origin.

3.1 Continuum-limit extrapolation

Since it is not affected by threshold effects, the effective spectral density ρ̃ in Eq. (2.5) is

the primary observable the authors of Ref. [46, 47] focus on. The nearly linear behaviour of the

mode number manifest itself in the (almost) flatness of ρ̃ in the same range. Because the action

and the mode number are O(a)-improved, the Symanzik effective theory analysis predicts that

discretization errors start at O(a2). In order to remove them, at every lattice spacing the authors

of Ref. [46, 47] matched three quark mass values (m = 12.9, 20.9, 32.0 MeV) by interpolating

ρ̃ linearly in m for each value of Λ. Within the statistical errors all sets of data are compatible

with a linear dependence in a2, and thus each triplet of points are extrapolated linearly in a2 to the

continuum limit independently, e.g. see left plot in Figure 2. The results for ρ̃ at m = 12.9 MeV

5https://www-zeuthen.desy.de/alpha/

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
0
1

Recent progress on chiral symmetry breaking in QCD Leonardo Giusti

0

0.01

0.02

0.03

0.04

0.05

0.06

 0  0.002  0.004  0.006

ρ ~
 [G

eV
3 ]

a2 [fm2]

Λ = 108 MeV
Λ =   48 MeV
Λ =   23 MeV

   m = 12.9 MeV

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120

ρ ~
 [G

eV
3 ]

Λ [MeV]

 m   = 12.9 MeV
a = 0

Figure 2: Left: continuum limit extrapolation of ρ̃ at the smallest reference quark mass m = 12.9 MeV for

three values of Λ = (Λ1 +Λ2)/2 [47]. Right: effective spectral density in the continuum limit as a function

of Λ = (Λ1 +Λ2)/2 at the smallest reference quark mass m = 12.9 MeV considered in Ref. [47]. Courtesy

of Refs. [46, 47].

in the continuum limit are shown as a function of Λ = (Λ1 +Λ2)/2 in the right plot of the same

Figure. A similar Λ-dependence is observed at the two other reference masses.

It is worth noting that no assumption on the presence of spontaneous symmetry breaking was

needed so far. These results, however, point to the fact that the spectral density of the Dirac op-

erator in two-flavour QCD is (almost) constant in Λ near the origin at small quark masses. This

is consistent with the expectation from the Banks–Casher relation in the presence of spontaneous

symmetry breaking. As discussed in section 2.2, in this case the NLO ChPT indeed predicts an

almost flat function in (small) Λ at (small) finite quark masses which is parameter-free once the

pion mass and decay constant are measured.

3.2 Chiral limit

The extrapolation to the chiral limit requires an assumption on how the effective spectral den-

sity behaves when m → 0. The absence of chiral logarithms in Eq. (2.6), however, implies that ρ̃nlo

is just a linear function of m near the origin. In this limit, as discussed in section 2.2, ρ̃nlo = Σ

holds also at non-zero Λ since all NLO corrections in Eq. (2.6) vanish. To check for this property,

in Refs. [46, 47] the data have been extrapolated following Eq. (2.6) but leaving the leading term

free to depend on Λ. The results of the fit are shown in the left plot of Figure 3. Within errors the

Λ-dependence is clearly compatible with a constant up to ≈ 80 MeV. Moreover the difference be-

tween the values of ρ̃ in the chiral limit and those at m = 12.9 MeV is of the order of the statistical

error, i.e. the extrapolation is very mild. A fit to a constant of the data gives [46, 47]

[πρ]1/3 = 261(6)(8) MeV , (3.1)

with the spacing being fixed in physical units by introducing a quenched strange quark and requir-

ing that FK = 109.6 MeV.

The authors of Ref. [45] analyzed their data by following the strategy adopted in the ex-

ploratory computation of Ref. [36]. The mode number at fixed lattice spacing and quark mass

6
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Figure 3: Left: effective spectral density ρ̃ in the continuum and chiral limits. Right: the continuum

extrapolated pion mass squared versus the RGI quark mass, both normalized to 4πF . The central line is the

GMOR contribution to the pion mass squared computed by taking the direct measure of the condensate from

the spectral density. The upper and lower solid lines show the statistical error and the dotted-dashed ones

the total error, the systematic being added in quadrature. Courtesy of Refs. [46, 47].

is fitted linearly in M in the range 50 ≤ M ≤ 120 MeV. The slope is then linearly extrapolated in

m to the chiral limit, and the results are finally extrapolated to the continuum limit linearly in a2,

see left plot in Figure 4. The dependence of the slope on the fitting range is estimated and included

in the systematic error. The result that they get is r0[πρ]1/3 = 0.689(16)(29). They prefer not to

quote a value in MeV due to the large uncertainty in the determination of the lattice spacing in

physical units from the ETM Collaboration [45]. However, if I use r0FK = 0.2794(44) from [15],

I get [πρ]1/3 = 270(6)(11)(4) MeV, an exercise that shows that their value is not inconsistent with

the result in Eq. (3.1). More work by the ETM Collaboration is desirable to have a precise and

reliable determination of the overall scale. For completeness in the right plot of Figure 4 the results

for the analogous computation with N f = 2+1+1 is also shown [45].

3.3 GMOR relation

As in any numerical computation, the chiral limit inevitably requires an extrapolation of the

results with a pre-defined functional form. The distinctive feature of spontaneous symmetry break-

ing, however, is that in the infinite volume limit the value of πρ at the origin has to agree with the

one of M2
πF2

π /2m in the chiral limit

lim
m→0

M2
πF2

π

2m
= π lim

λ→0
lim
m→0

ρ(λ ,m) . (3.2)

To make this comparison, the authors of Refs. [46, 47] complemented the computation of the

mode number with those for the mass and the decay constant of the pion, Mπ and Fπ , as well

as of the quark mass m. The dimensionless ratio M2
π/2mF , extrapolated to the continuum limit,

is shown in the right plot of Figure 3 together with the GMOR contribution to it computed by

taking the value of the spectral density in Eq. (3.1) (central line). The upper and lower solid lines

show the statistical error and the dotted-dashed ones the total error, the systematic being added

in quadrature. A different way to appreciate the excellent agreement is to compare the value of

[πρ]1/3 reported in Eq. (3.1) with the one of the condensate extracted from the GMOR relation

7
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Figure 4: Chiral and continuum (inset) extrapolations of the spectral density for the N f = 2 (left) and

N f = 2+1+1 (right) ensembles from Ref. [45]. Courtesy of Ref. [45].

which is [ΣGMOR]
1/3 = 263(3)(4) MeV. For completeness the value obtained in Refs. [46, 47] for

the decay constant in the chiral limit is F = 85.8(7)(20) MeV.

These results show that the spectral density of the Dirac operator in the continuum and chiral

limits is non-zero at the origin. They provide a numerical proof of the fact that the low-modes

of the Dirac operator do condense as dictated by the Banks–Casher mechanism in presence of a

non-zero chiral condensate, and that the picture of spontaneously broken chiral symmetry in QCD

is indeed correct.

A similar exercise can be done for the results in Ref. [45] and for those of the ETM collabora-

tion in Ref. [49]. By taking r0 = 0.420(14) from [49] I obtain [πρ]1/3 = 324(8)(14)(11), a value

which has to be compared with the condensate extracted from the overall fit of the pion mass and

the decay constant in the same reference, Σ1/3 = 269.9(65) MeV [49]. The tension between the

two values is again not inconsistent with the conclusions drawn above due to the large uncertainty

(larger than the error quoted above) in the determination of r0 in physical units from the ETM Col-

laboration, and also due to the discrepancy with respect to the value given before in units of FK , see

Refs. [45, 50] for a detailed discussion.

3.4 Miscellaneous remarks

From the analysis in Refs. [46, 47], the best results for the leading-order low-energy constants

of QCD with two flavours are

[ΣMS(2GeV)]1/3 = 263(3)(4) MeV , F = 85.8(7)(20) MeV . (3.3)

By taking the value of the Λ-parameter from the Alpha collaboration [51, 15], and by taking into

account the correlation with F , the results above correspond to the dimensionless ratios [46, 47]

[ΣRGI]1/3

F
= 2.77(2)(4) ,

ΛMS

F
= 3.6(2) . (3.4)

where the renormalization-group-invariant (RGI) condensate is defined with the convention of

Refs. [52, 53]. For the sake of clarity, often (also in the previous sections) the values of dimension-

ful quantities in the N f = 2 theory are expressed in physical units. They are, however, affected by

8
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an intrinsic ambiguity due to the matching of the quantity chosen to fix the lattice spacing with its

experimental value. The renormalization group-invariant dimensionless ratios quoted in Eq. (3.4),

however, are parameter-free predictions of the N f = 2 theory. They belong to the family of unam-

biguous quantities that should be used for comparing results in the two flavour theory at variance

with what is usually done in many reports, e.g. [19].

The quantities in Eq. (3.4) can be used to confront predictions from models, large Nc approx-

imation, etc. with lattice results. In this respect it is interesting to note that several years ago an

analytic computation of the chiral condensate in QCD was carried out in the context of the planar

equivalence between the large Nc limits of the N = 1 super Yang-Mills theory and a variant of

QCD with fermions in the antisymmetric representation [54, 55, 56]. In particular, an approximate

expression for the quark condensate for Nc = 3 QCD with quarks in the fundamental representation

was inferred from an exact calculation of the gluino condensate in the N = 1 super Yang-Mills

theory and further assumptions. The results that these authors quote, with the renormalization

conventions adopted in Eq. (3.4), is

[ΣRGI]1/3

ΛMS
= 1.43

[ Nc

2π2
KF(1/Nc,N f )

]1/3

(3.5)

where the numerical pre-factor 1.43 is just conventional and takes into account of the different con-

ventions adopted in Refs. [54, 55, 56] with respect to those in Eq. (3.4). The KF function encodes

the sub-dominant 1/Nc corrections, which they conjecture to be relatively small. If I now compare

the expression in Eq. (3.5) with the results in Eq. (3.4), I obtain [KF(1/3,2)
]1/3

= 1.01(5) which,

if taken at face value, is indeed compatible with having small sub-dominant corrections. Further

lattice computations at various Nc and N f are needed to test the conjecture, but the comparison

above provides a good example on how the results in Eq. (3.4) can be used to test predictions from

models and/or analytic approximations.

4. The Witten–Veneziano relation and the gradient-flow

The topological susceptibility in the SU(Nc) Yang–Mills theory can be formally defined in

Euclidean space-time as

χ =
∫

d4x 〈q(x)q(0)〉 , (4.1)

where the topological charge density q(x) is

q(x) =
1

64π2
εµνρσ Fa

µν(x)F
a
ρσ (x) . (4.2)

In general the definition (4.2) of the topological charge density needs to be combined with an

unambiguous renormalization condition. The cumulants of the charge, e.g. the susceptibility in

Eq. (4.1), require also additional subtractions of short-distance singularities to make the correlators

of the charge density integrable distributions. Besides its interest within the pure gauge theory,

χ plays a crucial rôle in the QCD-based explanation of the large mass of the η ′ meson proposed

by Witten and Veneziano (WV) [23, 24]. Analogously to the GMOR relation, the WV mecha-

nism predicts that at leading order in 1/Nc the contribution due to the anomaly to the mass of the

9
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pseudoscalar meson associated to the generator of U(1)A is given by [23, 24, 29, 57]

lim
m→0

lim
Nc→∞

F2
π m2

η ′

2Nf

= lim
Nc→∞

χ . (4.3)

For the Eq. (4.3) to be valid, the renormalization conditions for the charge and for the suscepti-

bility need to be chosen so that in presence of fermions the anomalous chiral Ward identities are

satisfied [29, 30, 31]. In this case the value of χ when Nc → ∞ corresponds also to a low-energy

constant in the simultaneous expansion in momenta and in 1/Nc of the U(3) chiral effective the-

ory [58, 59, 60, 61].

We know three families of definitions of the topological charge whose cumulants are ultravi-

olet finite and unambiguous: the one suggested by Ginsparg–Wilson (GW) fermions [26, 27, 28,

29, 30, 31], the spectral projector formulas [36], and the naive definition at positive flow time [62].

When the topological charge is defined as suggested by GW, its bare lattice expression and those

of the corresponding cumulants have finite and unambiguous continuum limits as they stand which

satisfy the anomalous chiral Ward identities by construction. The continuum limit of this defini-

tion of χ is the right one to be inserted in Eq. (4.3). By combining a series of anomalous chiral

Ward identities, the cumulants can be written as integrated correlation functions of scalar and pseu-

doscalalar density chains [30, 31], and well chosen combinations of them correspond to the spectral

projector definitions in Ref. [36]. Written in this form, a GW regularization is not required anymore

to prove that no renormalization factor or subtractions of short-distance singularities are required.

The spectral projector expressions thus provide a universal definition of the susceptibility and of

the higher cumulants which, in the continuum limit, satisfy the anomalous chiral Ward Identities

since in a chirally symmetric regularization they coincide with the GW ones.

Recently a third family of definitions of the topological charge was found [62], whose cumu-

lants have a finite and unambiguous continuum limit [62, 63]. It is a naive discretization of the

charge evolved with the Yang–Mills gradient-flow. It is particularly appealing because its numer-

ical evaluation is significantly cheaper than the others. This year there has been progress in this

direction, and it has been shown that indeed the continuum limit of the cumulants of topological

charge defined by the gradient-flow at positive flow time coincide with those of the universal def-

inition. After more than 30 years, the long story of defining the topological charge on the lattice

comes to a satisfactory end with a simple and elegant solution.

4.1 Gradient-flow definition of the topological charge in the continuum

Starting from the ordinary fundamental gauge field

Bµ

∣

∣

∣

t=0
= Aµ , (4.4)

the Yang–Mills gradient-flow evolves the gauge field as a function of the flow time t ≥ 0 by solving

the differential equation [62]

∂tBµ = DνGνµ +α0Dµ∂νBν , (4.5)

Gµν = ∂µBν −∂νBµ − i[Bµ ,Bν ] , Dµ = ∂µ − i [Bµ , ·] , (4.6)

10
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with α0 being the parameter which determines the gauge. Here we focus on the gradient-flow

evolution of the topological charge density defined as

qt =
1

64π2
εµνρσ Ga

µνGa
ρσ , (4.7)

and of the corresponding topological charge

Qt =
∫

d4xqt(x) . (4.8)

When qt(x) is inserted in a correlation function at a physical distance with any finite (multi)local

operator O(y), it holds [64]

〈qt(x)O(y)〉= 〈qt=0(x)O(y)〉+∂ρ

∫ t

0
dt ′ 〈wt ′

ρ(x)O(y)〉 (x 6= y; ρ = 0, . . . ,3) , (4.9)

where wt
ρ is a dimension-5 gauge-invariant pseudovector field. The l.h.s. of Eq. (4.9) is finite thanks

to the fact that a gauge-invariant local composite field constructed with the gauge field evolved at

positive flow time is finite [62, 63]. Since there are no local composite fields of dimension d < 5

with the symmetry properties of wt
ρ(x), the integrand on the r.h.s of Eq. (4.9) diverges at most

logarithmically when t ′ → 0. This implies that the quantity

〈qt=0(x)O(y)〉 ≡ lim
t→0

〈qt(x)O(y)〉 (x 6= y) , (4.10)

is finite, i.e. the limit on the r.h.s exists for any finite operator O(y). The Eq. (4.10) can be taken

as the definition of qt=0(x), i.e. the renormalized topological charge density operator at t = 0. It is

worth noting that Eq. (4.9) implies that the small-t expansion of qt(x) is of the form

〈qt(x)O(y)〉= 〈qt=0(x)O(y)〉+O(t) (x 6= y) , (4.11)

with no divergences when t → 0.

In the following we are interested in supplementing the theory with extra degenerate valence

quarks of mass m, and in considering the (integrated) correlator of a topological charge density

with a chain made of scalar and pseudoscalar densities defined as [31]

〈qt=0(0)P51(z1)S12(z2)S23(z3)S34(z4)S45(z5)〉 , (4.12)

where Si j and Pi j are the scalar and the pseudoscalar renormalized densities with flavor indices i

and j. Power counting and the operator product expansion predict that there are no non-integrable

short-distance singularities when the coordinates of two or more densities in (4.12) tend to coincide

among themselves or with 0. When only one of the densities is close to qt=0(0), the operator

product expansion predicts the leading singularity to be

qt=0(x)Si j(0)
x→0
−−→ c(x)Pi j(0)+ . . . (4.13)

where c(x) is a function which diverges as |x|−4 when |x| → 0, and the dots indicate sub-leading

contributions. An analogous expression is valid for the pseudoscalar density. Being the leading

short-distance singularity in the product of fields qt=0(x)Si j(0), its Wilson coefficient c(x) can be

11
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computed in perturbation theory. By using Eq. (4.9), to all orders in perturbation theory we can

write

〈qt=0(x)Si j(0)O(y)〉= 〈qt(x)Si j(0)O(y)〉−∂ρ

∫ t

0
dt ′〈wt ′

ρ(x)Si j(0)O(y)〉 , (4.14)

where again O(y) is any finite (multi)local operator inserted at a physical distance from 0 and x.

When t > 0, the first member on the r.h.s of Eq. (4.14) has no singularities when |x| → 0. If present,

the singularity has to come from the second term, and therefore c(x) must be of the form

c(x) = ∂ρuρ(x) (4.15)

which does not contribute to the integral (over all coordinates) of the correlation function (4.12).

4.2 Ginsparg–Wilson definition of the charge density with the gradient-flow

The definition of the topological charge density suggested by Ginsparg–Wilson fermions is [26,

28, 27]

a4qt
N(x) =−

ā

2
Tr
[

γ5D(x,x)
]

, (4.16)

where we indicate it with a subscript N since, for concreteness, we take D(x,y) to be the Neuberger–

Dirac operator in which each link variable is replaced by the corresponding evolved one when t > 0.

Since there are no other operators of dimension d ≤ 4 which are pseudoscalar and gauge-invariant,

it holds that

lim
a→0

Zq 〈q
t
N(0)qt=0

N (x)〉= finite , (4.17)

where Zq is a renormalization constant which is at most logarithmically divergent, while qt
N(0) is

finite as it stands. This in turn implies that

lim
a→0

Zq a4 ∑
x

〈qt
N(0)qt=0

N (x)〉= finite , (4.18)

since there are no short-distance singularities that contribute to the integrated correlation function

because qt
N(0) is evolved at positive flow-time. By supplementing the theory with extra degenerate

valence quarks of mass m, and by replacing in Eq. (4.18) the topological charge at t = 0 with its

density-chain expression we obtain

a4 ∑
x

〈qt
N(0)qt=0

N (x)〉=−m5a20 ∑
z1,...,z5

〈qt
N(0)P51(z1)S12(z2)S23(z3)S34(z4)S45(z5)〉 . (4.19)

Written as in Eq. (4.19), power counting and the operator product expansion predict that there are

no non-integrable short-distance singularities when the coordinates of two or more densities tend

to coincide. The r.h.s of Eq. (4.19) is finite as it stands, and it converges to the continuum limit

with a rate proportional to a2. This in turn implies that the limits on the l.h.s of Eqs. (4.17) and

(4.18) are reached with the same rate if Zq is set to any fixed (g0-independent) value. Since in the

classical continuum limit Neuberger’s definition in Eq. (4.16) tends to the one in Eq. (4.7) [65, 66],

we may set Zq = 1 in which case

lim
a→0

〈qt=0
N (x)OL(y)〉= 〈qt=0(x)O(y)〉 (x 6= y) , (4.20)

where OL(y) is a discretization of the generic finite continuum operator O(y). Once inserted in cor-

relation functions at a physical distance from other (renormalized) fields, qt=0
N (x) does not require

any renormalization in the Yang–Mills theory. It is finite as it stands, and it satisfies the singlet

Ward identities when fermions are included in the theory. So does qt=0(x).

12
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4.3 Ginsparg–Wilson definition of the charge cumulants

The Neuberger’s definition of the topological charge is given by

Qt
N ≡ a4 ∑

x

qt
N(x) , (4.21)

and its cumulants are defined as

Ct
N,n = a8n−4 ∑

x1,...,x2n−1

〈qt
N(x1) . . .q

t
N(x2n−1)qt

N(0)〉c . (4.22)

For t = 0 the cumulants have an unambiguous universal continuum limit as they stand and, when

fermions are included, they satisfy the proper singlet chiral Ward identities [29, 30, 31]. It is

far from being obvious that Ct=0
N,n coincide with those defined at positive flow-time, since the two

definitions may differ by additional finite contributions from short-distance singularities.

For the clarity of the presentation we start by focusing on the lowest cumulant, the topological

susceptibility Ct
N,1. At t = 0, by replacing one of the two qt=0

N with its density-chain expression [31],

we obtain

a4 ∑
x

〈qt=0
N (0)qt=0

N (x)〉=−m5a20 ∑
z1,...,z5

〈qt=0
N (0)P51(z1)S12(z2)S23(z3)S34(z4)S45(z5)〉 . (4.23)

When the susceptibility is written in this form, the discussion toward the end of section 4.1 and

in particular Eq. (4.15) guarantee that there are no contributions from short-distance singularities.

This result, together with the fact that Zq = 1, implies that

lim
t→0

lim
a→0

a4 ∑
x

〈qt
N(x)qt=0

N (0)〉= lim
a→0

a4 ∑
x

〈qt=0
N (x)qt=0

N (0)〉 . (4.24)

By replacing on the l.h.s qt=0
N (0) with the evolved one, no further short-distance singularities are

introduced and we arrive to the final result

lim
t→0

lim
a→0

a4 ∑
x

〈qt
N(x)qt

N(0)〉= lim
a→0

a4 ∑
x

〈qt=0
N (x)qt=0

N (0)〉 . (4.25)

By replacing 2n−1 of the charges in the nth cumulant with their density-chain definitions, the

very same line of argumentation can be applied. The Eq. (4.25), together with the independence

up to harmless discretization effects of Ct
N,n from the flow-time for t > 0 [62], implies that the

continuum limit of Ct
N,n coincides with the one of Ct=0

N,n . The cumulants of the topological charge

distribution defined at t > 0 thus satisfy the proper singlet chiral Ward identities when fermions are

included. They are the proper quantities to be inserted in the Witten–Veneziano relations for the

mass and scattering amplitudes of the η ′ meson in QCD.

4.4 Universality at positive flow-time

For t > 0 different lattice definitions of the topological charge density tend to the same contin-

uum limit if they share the same asymptotic behavior in the classical continuum limit [62, 63]. We

can therefore consider the naive definition of the topological charge density defined as

qt(x) =
1

64π2
εµνρσ Ga

µν(x)G
a
ρσ (x) , (4.26)
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where the field strength tensor Ga
µν(x) is defined as

Ga
µν(x) =−

i

4a2
Tr[

(

Qµν(x)−Qνµ(x)
)

T a] , (4.27)

with

Qµν(x) = Vµ(x)Vν(x+aµ̂)V †
µ (x+aν̂)V †

ν (x)+

Vν(x)V
†
µ (x−aµ̂ +aν̂)V †

ν (x−aµ̂)Vµ(x−aµ̂)+

V †
µ (x−aµ̂)V †

ν (x−aµ̂ −aν̂)Vµ(x−aµ̂ −aν̂)Vν(x−aν̂)+ (4.28)

V †
ν (x−aν̂)Vµ(x−aν̂)Vν(x+aµ̂ −aν̂)V †

µ (x) .

In the Yang–Mills theory qt=0(x) requires a multiplicative renormalization constant when inserted

in correlation functions at a physical distance from other operators [67]. The cumulants of the

corresponding topological charge, defined analogously to Eq. (4.22), have additional ultraviolet

power-divergent singularities, and they do not have a continuum limit.

The density qt(x) in Eq. (4.26) shares with qt
N(x) the same asymptotic behavior in the classical

continuum limit [65, 66]. Since for t > 0 short-distance singularities cannot arise, Ct
N,n and Ct

n tend

to the same continuum limit. The results in the previous section then imply that the continuum

limit of the naive definition of Ct
n, at positive flow-time, coincides with the universal definition

which satisfies the chiral Ward identities when fermions are added [29, 30, 31]. It is interesting to

note, however, that at fixed lattice spacing there can be quite some differences. For instance, the

topological susceptibility defined at t > 0 with the naive definition is not guaranteed to go to zero

in the chiral limit at finite lattice spacing in presence of fermions [68].

5. First two cumulants of the charge distribution in the SU(3) Yang–Mills theory

Over the last year or so the topological susceptibility of the SU(3) Yang–Mills theory has

been computed by several groups on a rich set of lattices with a statistical error of a few percent

[69, 70, 64, 71]. The results are shown in the left plot of Figure 5 together with the older results

obtained with the Neuberger [32] and with the spectral projector [72] definitions of the charge. The

best continuum limit values from the three families of definitions are6

r4
0χ = 0.0544±0.0018 gradient-flow [64] (5.1)

r4
0χ = 0.059±0.003 Neuberger definition [32] (5.2)

r4
0χ = 0.049±0.006 modified spectral projector [70] ,

see left plot in Figure 5. They all agree within less than 2 standard deviations. By computing the

topological susceptibility at different flow times, one can determine the ratios χt/χ for which the

statistical correlations among data reduce the error significantly. In Ref. [64] the continuum limit

of this ratio was found to be compatible with 1 at the permille level at various values of t, another

6Unless explicitly indicated, the gradient flow-time at which the topological quantities are computed throughout

this and the next section is at t = t0.
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Figure 5: The topological susceptibility χ (left) and the ratio R = 〈Q4〉c/〈Q
2〉 in the SU(3) Yang–Mills

theory versus (a/r0)
2.

universality test far from being trivial. At finite lattice spacing, in fact, discretization effects are

clearly visible, and they depend on t. All these numerical results are consistent with the conceptual

progress made over the last decade. Up to date there is no sign of non-universal behaviour of χ in

the continuum limit, if the topological charge is properly defined on the lattice. We have moved

from an unsolved problem in quantum field theory to precise universality tests!

The numerical computation of the charge defined by the gradient-flow is orders of magnitude

cheaper than for the other two expressions. Since its cumulants at positive flow time coincide with

those of the universal definition and discretization effects remain mild, the flow expression becomes

the way to go for further (precise) studies of topological observables on the lattice. Given the

statistical precision that can be easily reached, the all-time favorite Sommer reference scale r0 [73]

needs to be replaced by quantities which can be determined with a higher statistical (and systematic)

precision, such as those derived from the gradient-flow [50]. By using t0 as a reference scale [62],

the authors of Ref. [64] obtain the most precise determination of the topological susceptibility in

the SU(3) Yang–Mills theory to date

t2
0 χ = (6.67±0.07) ·10−4 ,

a value which is almost 3 times more precise than the one that can be obtained by using the present

best determination of r0.

In Ref. [64] the ratio of the second cumulant over the topological susceptibility, R= 〈Q4〉c/〈Q
2〉,

was also computed with the gradient-flow definition by keeping for the first time all systematics,

especially finite volume effects, negligible with respect to the statistical errors. The results are

shown in green on the right plot of Fig. 5. Their continuum limit extrapolation is

R = 0.233±0.045 (5.3)

which is in agreement with a previous determination obtained with the GW definition [74], black

and red points in the right plot of Fig. 5, albeit with an error 2.5 times smaller. The result in

Eq. (5.3) is incompatible with the θ -behaviour of the vacuum energy predicted by dilute instanton
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models, for which R = 1 [75]. It suggests that the quantum fluctuations of the topological charge

are of quantum non-perturbative nature in the ensemble of gauge configurations that dominate the

path integral. The large Nc expansion does not provide a sharp prediction for the value of R. Its

small value, however, is compatible with being a quantity suppressed as 1/N2
c in the large Nc limit.

6. Topological susceptibility in QCD

The computation of the topological susceptibility is expensive with respect to other quan-

tities computed in (full) QCD. This is due to the long autocorrelation encountered in the simu-

lations [76, 77, 78], and to the intrinsic fluctuations of this quantity. By expanding the charge

distribution around the leading Gaussian behaviour, the Edgeworth expansion leads to the estimate

of the relative error for the susceptibility given by ∆χ/χ =
√

2/Nconf+ . . . , where the dots indicate

terms which are suppressed by powers of 1/V [74]. For a precision of ∼ 5%, O(1000) independent

configurations are needed.

In the presence of spontaneous symmetry breaking with N f degenerate light flavours, the topo-

logical susceptibility toward the chiral limit goes as

χQCD =
Σ

N f

m+O(m2) , (6.1)

which implies a significant suppression with respect to the Yang–Mills theory. Moreover being a

pure gluonic operator, the slope of χQCD is a measurement a posteriori of the number of flavours

simulated once the chiral condensate is known. Vice versa, given the cost of its computation, the

topological susceptibility is not a competitive quantity to determine Σ.

In the last couple of years there have been two computations of χQCD, both carried out on

lattices with O(100) independent gauge configurations7. The statistical errors are therefore still

quite large. The Alpha collaboration computed the susceptibility, defined from the gradient-flow

charge density as in Eqs. (4.26), in the N f = 2 theory discretized with the standard Wilson gluonic

action and the non-perturbatively O(a)-improved Wilson fermion action. They used the gauge

configurations generated by the CLS community and by themselves to obtain the results shown in

the left plot of Figure 6 [68]. The ETM collaboration computed the susceptibility by implementing

a variant of the spectral projection definition in the N f = 2 and N f = 2+1+1 theories. They have

simulated the tree-level Symanzink (N f = 2) and the Iwasaki gluon actions (N f = 2+ 1+ 1), and

the Wilson twisted mass fermion action. The results that they have obtained in the N f = 2+1+1

theory is shown in the right plot of Figure 6 as a function of the renormalized quark mass [80].

The suppression of χQCD with respect to the Yang–Mills result is clearly seen in both sets of

results, and it is manifest in the left plot where also the Yang–Mills value of the susceptibility is

reported. In either cases there is no reason for χQCD to vanish in the chiral limit at finite lattice

spacing. The authors of Ref. [68] indeed extrapolate the data with the functional form suggested

by LO Wilson ChPT

t2
1 χQCD = ct1M2

π +b
a2

t1
, (6.2)

7A recent attempt to extract the topological susceptibility from the local fluctuations of the charge density two-point

correlator can be found in Ref. [79].
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Figure 6: Left: topological susceptibility of the N f = 2 theory for all ensembles considered in Ref. [68].

Right: the susceptibility for the N f = 2+1+1 theory for all ensembles simulated in Ref. [80]. Courtesy of

Refs. [68, 80].

where t1 is a reference scale defined analogously to t0. The function fits the data well within the

(large) statistical errors, see left plot in Figure 6. By taking at face value the result of the fit of

c = 2.8(5) ·10−3 [68], by remembering that at LO in ChPT c = F2t1/2N f , and by taking the value

of F from Eq. (3.3) and t1 = 0.061 fm2 from Ref. [68], I get N f = 2.06±0.38. A result which is in

agreement with the expected value, the error being still quite large though.

7. Conclusions

Over the last decade there has been an impressive global lattice community effort to reach a

precise quantitative understanding of the behaviour of QCD in the chiral regime from first princi-

ples. A rather clear and precise picture is emerging.

The spectral density of the Dirac operator in QCD Lite is non-zero at the origin in the contin-

uum and chiral limits. Its value coincide with M2
πF2

π /2m when m → 0. This provides a beautiful

numerical proof that our picture of spontaneously broken chiral symmetry in QCD is indeed correct.

The low modes of the Dirac operator do condense near the origin as dictated by the Banks-Casher

mechanism, and their rate of condensation generates the bulk of the pion mass up to quark masses

that are about one order of magnitude larger than in Nature.

The topological susceptibility shows the expected suppression with the mass of the light

quarks. Within the (so far) large errors, results are compatible with LO ChPT. By now there are

many determinations of the QCD low-energy constants obtained by comparing the predictions of

ChPT with the precise lattice results with N f = 2, N f = 2+1 and N f = 2+1+1 flavours.

We have accumulated stronger and stronger evidence that the breaking of the abelian chiral

group due to the quantum anomaly is driven by the Witten–Veneziano mechanism. This year it

was understood that the recently found definition of the topological charge via the Yang–Mills

gradient-flow leads to cumulants of the topological charge distribution which coincide with the

universal ones. All numerical results for the topological susceptibility in the SU(3) Yang–Mills

theory obtained with the various (proper) definitions agree in the continuum limit within the few

percent precision. Its value reproduces the mass of the η ′ meson within the expected uncertainty.

On a more theoretical side, the (30 years) long story of defining the topological charge on

the lattice comes to a satisfactory end with a simple and elegant solution. Numerical results are
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consistent with this theoretical progress.

Thanks to the conceptual, theoretical and technical advances achieved over the last decade in

lattice gauge theory, our femtoscope can explore the chiral regime of QCD with higher and higher

precision. This was just a dream only 10-15 years ago, and now is a reality. Hard work is still

needed to empower the femtoscope in many other corners of the theory, e.g. the baryon sector.
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