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There has been a long-standing debate if the chiral phase transition in two-flavor massless QCD

is first order or second order. The previous arguments based on epsilon expansions, large N

expansions, functional renormalization group, and Monte-Carlo simulations had been all incon-

clusive with shortcomings. If it were the second order phase transition, there should exist a cor-

responding three-dimensional conformal field theory which describes the critical phenomenon.

The recent development in conformal bootstrap enables us to directly study the (non-)existence

of conformal fixed points in a non-perturbative manner. In this proceeding, I review the conformal

bootstrap method and its application to this problem. Our conclusion is that the corresponding

conformal fixed point should exist and the phase transition will be the second order if the U(1)

chiral anomaly is effectively restored. This means that the original 1-loop prediction by Pisarski

and Wilczek would be incorrect. We further provide the most precise prediction of the critical

exponent there. We believe future numerical simulations will confirm our prediction.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan*

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:nakayama@theory.caltech.edu


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
0
2

Determining the order of chiral phase transition in QCD from conformal bootstrap Yu Nakayama

1. Introduction

One of the greatest challenges to theoretical physicists is to understand the universal nature of
phase transitions and critical phenomena. A significant triumph of the last century in this direction
is the introduction of renormalization group (RG), which enables us to explain the infrared behav-
iors of physical systems from a small number of relevant parameters (see e.g. [1][2]). If a system
undergoes a continuous phase transition, its critical behavior is governed by the endpoint of the RG
flow realized as a scale invariant and, in most cases, conformal invariant field theory. Whether such
a conformal field theory (CFT) with a given symmetry of the system exists or not is of theoretical
interest because without its existence the continuous phase transition cannot occur.

In particular, there has been a huge controversy if the chiral phase transition of the QCD (with
two massless quarks to make the question mathematically well-defined) is first order or second
order. From this perspective, (non-)existence of fixed points inO(n)×O(m)-symmetric Landau-
Ginzburg-Wilson (LGW) Hamiltonian ind = 3 spatial dimensions

H = (∂µφ α
a )(∂µφ α

a )

+u(φ α
a φ α

a )2+v(φ α
a φ α

b φ β
a φ β

b −φ α
a φ α

a φ β
b φ β

b ), (1.1)

wherea= 1, · · ·n andα = 1· · ·m, plays a crucial role. In two-flavor QCD with the axial anomaly
suppressed, the chiral phase transition is described by1.1with v< 0 with O(4)×O(2)≃SU(2)L×
SU(2)R×U(1)A symmetry. The possibility for the effective restoration ofU(1)A symmetry at the
chiral phase transition temperature has attracted a renewed interest. See e.g. [3][4][5][6][7][8] and
reference therein for recent discussions.

Despite their importance, theoretical studies of LGW models1.1 have been notoriously hard
and there remain long-standing controversies regarding what kind of fixed points actually exist. In
[9], they derived the perturbative series directly at the physical dimensiond = 3 in massive-zero-
momentum (MZM) scheme up to six-loop order, and in [10] minimal subtraction (MS) scheme
up to five-loop order. After careful resummations, the presence of non-trivial fixed points distinct
from the Heisenberg ones(v= 0) were predicted forn= 2,3,4 in [9][11][12][7], but some of the
results have been criticized e.g. in [13] due to the lack of confirmation in the weak-coupling regime
and the parameter dependence in the resummation. On the other hand, the functional RG truncated
beyond the local potential approximation has predicted the absence of these fixed points forn= 2,3
[14][15]. Meanwhile, the situations in lattice Monte-Carlo simulations and experimental results
have been equivocal.

Recently intensive efforts have been made toward non-perturbative understanding of higher
dimensional CFTs via the conformal bootstrap program. The output of the program is (within con-
trollable numerical errors) rigorous bounds on scaling dimensions of operators [16][17] or operator
product expansion coefficients [18] including various central charges [19][20][21]. One eminent
feature is the presence of singular behaviors called “kinks” in the bounds and the agreement in their
positions with previously known interacting CFTs, e.g. Wilson-Fisher fixed points [17][22][23][24]
andd = 3 O(N) Heisenberg fixed points [25]. Even without a firm proof, experimental success is
convincing enough that the existence of the kink indicates the signal of interacting CFTs sitting
there.
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In this proceeding, we report our conformal bootstrap program forO(n)×O(2)-symmetric
CFTs withn= 4 [26] as a natural continuation of our previous work [27]. There we identified all
the conjectured fixed points ofO(n)×O(3) symmetric CFTs with sufficiently largen and proposed
the edge of the conformal window for the anti-chiral fixed point. Encouraged by these results, we
have tackled the controversies to address the (non)-existence of conjectured CFTs. We have found
a non-perturbative support for the conclusion of [9][11][12]- i.e., the presence of new universality
classes that are distinct from Heisenberg ones.

2. Notations and a quick summary of theO(n)×O(3)-bootstrap results

Here we briefly summarize the notations and results of our previous work [27]. We as-
sume the presence of scalar operatorφ α

a (i.e. the elementary field in1.1) with conformal di-
mension∆φ in a bifundamental representation ofO(n)×O(m). The conformal block decompo-
sition of their four-point function has nine independent channels corresponding to the irreducible
representations contained in the bifundamental×bifundamental tensor product, which we label as
SS, ST, SA, TS, · · · , AA . HereS,T,A denote a singlet, a traceless-symmetric tensor, and an anti-
symmetric tensor representation ofO(n) andO(m) symmetry group, respectively. ForO(2), A and
Sare distinguished by the spin of the operator.

As was first studied in [21], we can numerically compute the upper bounds on the dimension
of the first operator with definite spin (labelled asl ) for each sector of the representation (labelled
asR) which we denote by∆R,l

c (∆φ ). The upshot of [27] is that form= 3 andn≫ 3, we can identify
all the fixed points as singular behaviors of the output∆R,l

c (∆φ ). In other words, we can “solve”
these fixed points in the same sense as in [22][24]. In addition to theO(3n) Heisenberg fixed point,
we found an unstable fixed point (called “anti-chiral” in the literature) in∆TA,1

c and∆ST,0
c , or a stable

fixed point (called “chiral” in the literature) in∆TS,0
c but did not find any interesting behaviors in

the other sectors.
Below we compute the bounds for dimensions of various operators inO(n)×O(2) symmetric

CFTs with4 [26], following the scheme of [25]. We use the hybrid method of Zamolodchikov-type
recursion introduced there and extremely convenientρ-series expansion derived in [28] to generate
partial fractional approximations for conformal blocks. Our sdpa-gmp [29][30] implementation
will be identical to the one in [27]. We do not assume intermediate scalar operator dimensions
to be greater than 1 unlike in [25][24], which is obligatory for our purpose because some of the
conjectured fixed points have intermediate scalar operators with dimension below 1.

3. n= 4 : QCD and Collinear fixed point

In [33] it was pointed out thatSU(2)L ×SU(2)R-symmetric LGW models will describe the
QCD chiral phase transition which occurred in our early universe, where the bifundamental scalar
fields are identified with the meson fields. As was already discussed there, the presence of anoma-
lousU(1)A symmetry which may be restored by finite-temperature effects could significantly al-
ter the conclusion. The anomaly term makes a certain meson field (includingη ′) massive so
that the resultant fixed point by tuning the temperature could be onlyO(4) Heisenberg one (or
first order). See [34][35] for the RG analysis. We point out that some recent numerical as well
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as theoretical studies suggest the possibility of the effective restoration ofU(1)A at the transi-
tion temperature, see e.g. [3][4][5][6][7]. If this is the case, the LGW model to be studied is
SU(2)L×SU(2)R×U(1)A ≃O(4)×O(2) as in1.1, for which the existence of IR-stable fixed point
is again controversial. The higher order perturbative study predicts the chiral(v> 0) and collinear
(v< 0) fixed points while functional RG analysis provides no evidence for them [39][40][41]. Note
that thecollinear fixed point is the one relevant in the chiral phase transition, where the symmetry
breaking pattern isSU(2)L×SU(2)R×U(1)A →SU(2)diag. For the lattice simulations to determine
the order of the chiral phase transition with conflicting results, we refer to [42][43][44] [45][46].
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Figure 1: The bound∆ST,0
c for O(4)×O(2) symmetric CFTs. Here the search space dimension is55×9,

i.e.,k= 10 in the notation of [25].
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Figure 2: The bound∆AA ,0
c for O(4)×O(2) symmetric CFTs. Here the search space dimension is78×9,

i.e.,k= 12 in the notation of [25].

We present our results for∆ST,0
c and ∆AA ,0

c in FIG 1 and 2. One technical remark here is
that the anti-symmetric tensor representation ofO(4) is actually a direct sum of two irreducible
representations, but we did not take this into account since the LGW model1.1relevant for us has
aZ2-symmetry which permutesSU(2)L andSU(2)R. As was pointed out in [32], one can read off
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∆φ ∆SS ∆ST ∆TS ∆TT ∆AA

bootstrap 0.530(3) 1.35(4) 1.80(6) 1.31(2) 1.085(3) 0.90(1)

MS 0.536(5) 1.44(10) 1.83(8) 1.35(3) 1.06(10) 0.83(10)

MZM 0.533(3) 1.04(12) 1.94(7) 1.36(5) 0.96(20) 0.71(8)

Table 1: The low-lying spectra read off around the kink in FIG. 1 and the spectra for theO(4)×O(2) chiral
fixed point from [36],[12] and [31].

∆φ ∆SS ∆ST ∆TS ∆TT ∆AA

bootstrap 0.558(4) 1.52(5) 0.82(2) 1.045(3) 1.26(1) 1.71(6)

MS 0.56(3) 1.68(17) 1.0(3) 1.10(15) 1.35(10) 1.9(1)

MZM 0.56(1) 1.59(14) 0.95(15) 1.25(10) 1.34(5) 1.90(15)

Table 2: The low-lying spectra read off around the kink in FIG. 2 and the spectra for theO(4)×O(2)
collinear fixed point from [7],[12] and [31].

the spectra contained inφ ×φ OPE. In TABLE1 and2 we list the spectra at the kink (∆φ ≃ 0.530
for ∆ST,0

c and∆φ ≃ 0.558for ∆AA ,0
c ). From this comparison we find it reasonable to regard the kink

in ∆ST,0
c as the chiral fixed point and that in∆AA ,0

c as the collinear fixed point. Hence our non-
perturbative results in agreement with the higher-loop analysis in RG provides a strong support
for the existence of the chiral as well as collinear fixed point, and the latter, in particular, suggests
the possibility of continuous chiral phase transition in QCD once theU(1)A is effectively restored.
The low-lying spectra we obtained also predict the scaling behaviors of symmetry breaking effects
from small mass of the quarks as well as theU(1)A breaking effects (e.g. instanton) near the chiral
phase transition point. Note that, unlike the earlier prediction, our prediction for the∆SS≃ 1.52(5)
significantly differs from∆S ≃ 1.67(1) of theO(4) Heisenberg universality class and could offer a
clue for judgingU(1)A restoration scenario itself in the future lattice and experimental studies of
the correlation length.

4. Discussions

In this proceeding we have reported our conformal bootstrap program forO(n)×O(2)-symmetric
CFTs with4 [26]. As in n≫m= 3 case carried out in [27], we have observed singular behaviors in
the bounds of the dimension of operators in different sectors. Although our identification for them
to be actual CFTs is still phenomenological based on the past experiences, their agreement with
earlier higher-loop perturbative results is a striking evidence for the validity of both methods. We,
therefore, believe that the results in [9][10][12] together with ours are robust enough to conclude
that the chiral phase transition in QCD, if being inside an attractor region in its RG flow, should
exhibit continuous phase transitions with the critical exponents that we most precisely predict from
the output of the conformal bootstrap program.

We end with several challenges to the conformal bootstrap program. Firstly, we had to resort to
the earlier RG results to determine the symmetry breaking pattern. To be fully self-contained, it is
imperative to know the signs of some OPE coefficients, but this is impossible from the bootstrap of
the single correlator alone since all the OPE coefficients appear as the squares of them. The mixed-
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correlator bootstrap [47] with the energy-momentum tensor will fix the sign issue. However, the
independent structures in the four-point function of the energy-momentum tensors are numerous
[48], and the computational task would be even more intensive. Secondly we are urged to under-
stand the meaning of kinks, for which the recently observed “spectrum jumping” behavior might
be helpful [24]. It has also been observed in [47] that the simultaneous consideration of several
correlators and assumptions on the number of relevant operators in the spectrum is so restrictive
that it singles out the region around the kink (where thed= 3 Ising model is supposed to live) as an
isolated “island” in the space of entireZ2-symmetric CFTs. Our conclusion would become more
convincing if we observed similar phenomena also in our models. All in all, it is quite plausible
that deeper knowledge of the conformal bootstrap program will revolutionalize our understanding
of the world. Then the resolutions of the controversies in QCD would be just a small example.
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