
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
1
4

QCD at non-zero temperature from the lattice

Harvey B. Meyer∗

PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz,
Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
E-mail: meyerh@kph.uni-mainz.de

I review the status of lattice QCD calculations at non-zero temperature. After summarizing what
is known about the equilibrium properties of strongly interacting matter, I discuss in more detail
recent results concerning the quark-mass dependence of the thermal phase transition and the status
of calculations of non-equilibrium properties.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan*

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:meyerh@kph.uni-mainz.de


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
1
4

QCD at non-zero temperature from the lattice Harvey B. Meyer

1. Introduction

In the 1960’s, bulk hadronic matter was predicted to undergo a thermal phase transition due to
the high multiplicity of hadrons [1]. With the advent of QCD as the theory of the strong interaction,
the phase above that transition was identified with a weakly interacting gas of quarks and gluons [2]
in virtue of asymptotic freedom. High-temperature QCD was studied more systematically starting
in the late 1970’s [3]. The first studies of strongly interacting matter at non-zero temperature T
using lattice QCD date back to 1981 [4]. Lattice QCD is so far the only computational framework to
have led to reliable quantitative predictions on equilibrium quantities such as the equation of state,
the transition temperature Tc and quark number susceptibilities in the temperature range 100 .
T/MeV . 500. Thereby it has had an important impact on heavy-ion collision phenomenology.
Lattice QCD has also contributed decisively to answering qualitative questions such as ‘What is
the nature of the thermal transition?’, ‘What is the character of the high-temperature phase at T =

250MeV, 500MeV and 1000MeV?’ or ‘What is the character of the low-temperature phase at T =

140MeV?’. While it is accepted that the medium is a gas of pions a sufficiently low-temperatures,
and a gas of quarks and gluons at sufficiently high temperatures, lattice methods are the only theory
methods able to bridge the gap between these two limits.

I attempt to review the status of the lattice QCD effort. The achievements are remarkable,
yet there are still significant challenges to be overcome before we can claim that all the qualitative
questions formulated above are answered in a satisfactory manner, particularly concerning the non-
equilibrium quantities. A review of this length cannot possibly be exhaustive. Fortunately, several
reviews have appeared in recent years [5, 6, 7, 8], as well as lattice conference write-ups.

The next section gives an overview of what has been learnt about QCD at non-zero temperature
from the lattice; here the results are not necessarily recent. In section 3, I cover recent work on
the quark-mass dependence of the phase diagram (Columbia plot). Section 4 is devoted to non-
equilibrium quantities. The last section contains some final remarks.

2. QCD at non-zero temperature: a portrait

We begin by fixing some notation. Lattice QCD employs the Matsubara formalism of thermal
field theory, where the partition function Z ≡ Tr{e−β Ĥ} is represented as a Euclidean path integral,
in which bosons have periodic, fermions antiperiodic boundary conditions in time [9]. The extent
of the time and space directions is β = 1/T = Nta and L respectively. We will only consider
isospin symmetric QCD, with up-down quark masses mud and strange quark mass ms. The isospin
Pauli matrices are denoted τa and ψ is the up/down quark doublet field. Let 〈ψ̄ψ〉 be the chiral
condensate. In the chiral limit, it is the order parameter for chiral symmetry breaking: it vanishes
above the chiral transition. Its susceptibility can be written χm = T

L3
∂ 2

∂m2
ud

logZ. Thermodynamic
quantities of interest include the energy density e, pressure p and entropy density s. Quark number
susceptibilities can be written as χs = β

∫
d3x〈J0(x)J0(0)〉 (x0 6= 0), if Jµ is a conserved vector

current. We will address a few transport coefficients, such as the diffusion coefficient D and the
shear viscosity η .

2.1 Properties at physical u,d,s quark masses

The transition temperature.— The most thorough investigations of the transition temperature have

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
1
4

QCD at non-zero temperature from the lattice Harvey B. Meyer

been performed with staggered fermions. The BW collaboration [10] locates the transition temper-
ature at 155(2)(3)MeV, based on the inflection point of mud(〈ψ̄ψ〉|T0 )/T 4. As for results based on
the peak of the chiral susceptibility, the same publication [10] gives Tc = 147(2)(3)MeV, while the
HotQCD collaboration [11] obtained Tc = 154(8)(1)MeV. In the latter calculation, an additional
feature was the use of the expected scaling laws near the chiral limit.

Last year, a calculation [12] using domain-wall fermions yielded the result 155(1)(8)MeV
based on the same quantity, thus providing a universality test, even though this calculation was
performed at a single, fixed value of Nt = 8. Calculations with Wilson fermions are progressively
moving toward physical quark masses [13].

Deconfinement.— It is an intriguing question whether the deconfinement of partons occurs at the
same temperature as the chiral transition. Within QCD, the question cannot be given a completely
sharp meaning, since the transition is a crossover [14, 12], and there is no known strict order
parameter for confinement. Nevertheless, the light-quark number susceptibility χ

u,d
s /T 2 admits

an inflection point practically at the same temperature as the chiral restoration [15, 16]. The rise
of the strangeness fluctuations as a function of temperature is delayed by about 20MeV. Ratios of
cumulants of the baryon number RB

42 = χB
4 /χB

2 , which are identically unity in the hadron-resonance
gas model, provide another useful criterion. The ratio RB

42 deviates substantially from unity already
at T = 155MeV [17].

Thermodynamic potentials.— Good agreement was reached between the calculations of the BW [18]
and the HotQCD [19] collaborations once the continuum limit was taken based on the ranges
6 ≤ Nt ≤ 16 and 6 ≤ Nt ≤ 12 respectively. At T = 255MeV, that is, 100MeV above the chiral
transition, the pressure amounts to about half the Stefan-Boltzmann pressure corresponding to free
quarks and gluons. And, the ratio1 (e− 3p)/[3

4(e+ p)] evaluates to about a third. There are thus
large deviations from both a weakly-coupled regime and from a scale-invariant regime.

The hadron resonance gas (HRG) model vs. lattice data.— The HRG model assumes that the
thermal medium consists of quasiparticles with a spectrum identical to the hadron spectrum in
vacuum. It is justified to some extent by the studies showing that resonances whose width is
narrow compared to the temperature can be treated as constituents of the medium [20]. The model
describes the thermodynamic potentials and the quark number susceptibilities very well up to T =

155MeV. The level of agreement is surprisingly good, given that most of the T = 0 resonances are
not narrow compared to the temperature and that thermal effects are bound to modify the spectrum
of thermal quasiparticles.

Static screening masses.— In the high-temperature phase, a number of static correlation lengths
(=inverse screening masses) have been computed. The light-quark isovector masses are expected
to approach 2πT at high temperatures. This behavior is approximately observed in several calcula-
tions [21, 22, 23, 24, 25]. However, looking more closely, the weak-coupling correction is of order
g2(T ), with a positive coefficient [26]. What several lattice calculations have found [21, 22, 23, 24,
25] is that the pseudoscalar screening mass lies well below 2πT at least until T = 500MeV; higher
temperatures have not been explored much. Also, the transverse vector screening mass is found
to be below 2πT at T = 255MeV [27]. Therefore, from the point of view where the z direction is

1This quantity corresponds to the ratio of the expectation value of the trace of the energy-momentum tensor and the
00-component of its traceless part.
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Figure 1: The ‘Columbia plot’, which indicates the dependence of the nature of the thermal QCD transition
on the up, down and strange quark masses mud ≡mu = md and ms. Two scenarios are depicted, which differ
qualitatively in the mud → 0 limit. In the left, the phase transition is of second order at mud = 0. In the right
panel, the phase transition is of first order below a critical mud mass.

interpreted as a Euclidean time, quarks appears to be more strongly bound than the weak-coupling
treatment predicts. Finally, we remark that calculations in the low-temperature phase indicate that
the pseudoscalar correlation length starts to become shorter well below Tc, see e.g. [28].

2.2 Dependence of the phase transition on the matter content of the gauge theory

The simplest deformation of QCD with u,d,s quarks consists in varying the masses of these
quarks. The nature of the thermal transition is expected to have a specific dependence on these
masses, which is represented graphically in the ‘Columbia plot’; see Fig. 1.

Two features are firmly established, both by universality arguments and by direct Monte-Carlo
simulations. In the limit of infinite quark masses, the theory reduces to the SU(3) pure gauge
theory, and the Z(3) symmetry associated with the center of the gauge group becomes exact. As
anticipated [29], based on the fact that Z(3) invariant theories in three dimensions have first order
phase transitions, the deconfinement transition is found to be first order. At the opposite corner
of the Columbia plot, i.e. in the limit where mud → 0 and ms → 0, a sharp phase transition, now
associated with chiral symmetry, takes place. There are strong arguments that it is first order [30].

In a broad range of mud and ms, including the physical values of the masses, the thermal
transition is a crossover. The Z(2) critical line at large quark masses, where the first order transition
turns into a crossover, has been studied on the lattice. Pinning down the Z(2) critical line in the
lower left corner of the diagram is the subject of current simulations; see section 3.

In the SU(2) chiral limit, i.e. when mud → 0 with the strange quark mass held fixed at its
physical value, the chiral transition must be a well-defined phase transition. The transition may be
of second order in the O(4) universality class, or it may be of first order [30]. Which scenario is
realized in Fig. 1 is also the subject of current calculations; see section 3.
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2.3 Transition temperature as a function of the matter content

The crossover temperature at physical u,d,s quark masses Tc ≈ 155MeV is lower than edu-
cated guesses made in the 1980’s [31]. In the following we give an overview of the dependence of
the transition temperature on the matter content. For this purpose, we compare the Tc’s of different
theories in units of the Sommer reference scale r0. However, since MeV units are more familiar,
we set r0

.
= 0.5fm to quote results in MeV.

Within the three-flavor theory, extensive calculations [13] with Wilson fermions show that the
transition temperature decreases as a function of the light-quark masses. With two flavors, results
have been obtained recently with Wilson fermions, both with and without a twisted-mass action.
At a quark mass corresponding to a zero-temperature pion mass of about 300MeV, the crossover
is very broad. Ref. [24] quotes Tc = 211(5)MeV, while the result of Ref. [32] corresponds to
Tc = 180(12)MeV in our chosen scale setting. There is therefore some tension between these two
results. The first was obtained at finite Nt = 16, the second is a continuum-extrapolated result based
on Nt ≤ 12.

When all three quark masses become heavy, one reaches the SU(3) pure gauge theory. A
recent, accurate result for the deconfinement temperature is Tc = 294(2)MeV [33]. In view of
these results, one may wonder if the transition temperature would decrease even further if light
matter fields were added. This question has arisen in the context of walking gauge theories. It
has been conjectured that the transition temperature goes all the way down to zero as the number
of flavors is increased; see the results and the discussion in [34]. Once Nf is large enough for
the transition to occur at T = 0, the infrared properties of the T = 0 system are described by a
conformally invariant theory. The phase transition has been used as a tool to study gauge theories
with many matter degrees of freedom, since it is not easy to numerically distinguish a chirally
broken phase from the conformally invariant phase; see for instance [35].

2.4 Gauge group dependence of the equilibrium properties

Another direction in which one can depart from QCD is by changing the gauge group. Varying
the number of colors Nc, several studies of the thermodynamic potentials of SU(Nc) gauge theory
have been performed [36]. In the high-temperature phase, it is useful to define the function

p̄(x) =
( p

pSB

)
(T = xTc), (2.1)

whose value is the pressure normalized by the Stefan-Boltzmann pressure, as a function of the
temperature in units of the transition temperature. The result is that within the small uncertainties,
p̄ for 3 ≤ Nc ≤ 8 is found to be ‘universal’ for x > 1.1. This empirical fact indicates that the
multiplicity of the degrees of freedom scales with (N2

c − 1), as expected in the weak-coupling
regime. The departure from unity is still large, for instance p̄(1.6) ≈ 0.5, a value very similar to
QCD with physical u,d,s quark masses.

Studies have also been performed with other gauge groups, most notably with the exceptional
group G(2) [37, 38]. The theory admits color singlet asymptotic states, but has no center symmetry.
Remarkably, here too p̄(x) for x ≥ 1.1 is consistent with the function obtained for the SU(Nc)
groups [38].
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In the low-temperature phase, it is interesting to ask whether a ‘hadron’ resonance gas model
accounts for the equilibrium properties as well as for realistic QCD. According to the large-Nc

counting rules, interactions among the ‘hadrons’ should be of order 1/N2
c in the pure SU(Nc) gauge

theories, and therefore even more suppressed than in QCD, thus giving the model a stronger justi-
fication. While the low-lying glueball spectrum of SU(3) gauge theory is fairly well known from
lattice calculations [39], it turns out that, within the model, the thermodynamic potentials receive
a substantial contribution from very massive states. Assuming that the glueball spectrum extends
at higher masses as predicted by the closed-string spectrum, a good description of the thermody-
namic potentials computed on the lattice is obtained [40, 41]. Since the spectrum is exponential
(Hagedorn-type spectrum), the model prediction depend somewhat on the value of the exponent
chosen and on whether the spectrum is assumed to be charge-conjugation symmetric. Nevertheless
the agreement with lattice data is quite impressive.

2.5 Very high temperatures: making contact with perturbation theory

Since there are large deviations from the non-interacting behavior at T = 1.6Tc, one may won-
der at what temperature contact is made with perturbative calculations, which for many quantities
have been pushed to high orders. In computing the pressure (or the quantity e− 3p), a multi-
scale problem arises at very high temperatures, since a direct approach would imply subtracting
the vacuum contribution non-perturbatively at the same lattice spacing. One solution [42] consists
in performing the vacuum subtraction in several steps, adding and subtracting the pressure at tem-
peratures differing by a factor two. Another approach consists in computing the enthalpy e+ p,
which does not require a vacuum subtraction. Then a renormalization factor is required, which
may for instance be computed using shifted boundary conditions [43, 44, 45, 46]. Overall pertur-
bation theory provides a good description of the lattice data for T > 5Tc if a coefficient of the O(g6)
contribution is fitted to the highest temperatures. However, the successive terms of the perturbative
series are alternating and hardly decreasing in magnitude with the order – this has been known for
a long time [47].

Is the lack of apparent convergence of the perturbative series at T < 10Tc a symptom that the
nature of the medium is completely different from the weak-coupling quark-gluon plasma picture?
Probably not. After all we know that the expansion is in powers of g, not αs =

g2

4π
, and that the

medium has a non-perturbative sector even at arbitrarily high temperatures. Different observables
are sensitive to this sector starting at different orders.

2.6 Summary

• In the low-temperature phase, the hadron resonance gas model provides a good description of the
equilibrium properties.
• The thermal transition is a crossover.
• The chiral and deconfinement transitions essentially coincide, with Tc = 155MeV being a typical
value obtained for the crossover.
• Above the transition, the multiplicity of the degrees of freedom is consistent with the number
expected for quarks and gluons;
• but many equilibrium quantities are far from the weak-coupling predictions at least until T =

2.5Tc. In addition, the size of the elliptic flow observed in heavy-ion collisions points to a medium
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with a very small shear viscosity to entropy density ratio in the range Tc < T < 2.5Tc, typical
estimates being η/s≈ 0.12 at RHIC and η/s≈ 0.2 in the ALICE experiment [48]. Taken together,
the last two observations indicate that, in the range of temperatures explored in heavy-ion collisions,
the partonic degrees of freedom are strongly correlated.

3. Toward a quantitative version of the Columbia plot

• The region around the SU(3) chiral limit mud = ms = 0.— Lattice calculations find that for suffi-
ciently small u,d,s quark masses the transition is first order. However, quantitatively the findings
differ wildly depending on the lattice action and lattice spacing used. Generally, the observation
has been that a smaller lattice spacing leads to a smaller first-order region.

Jin et al. have published [49] and reported at this conference the result of a finite-size scaling
study at Nt = 6 and 8, including a continuum extrapolation. They find mcrit

π = 304(7)(14)(7)MeV
for the critical pseudoscalar mass. This result was obtained with an O(a) improved Wilson fermion
action and the Iwasaki gauge action. H.-T. Ding for the Bielefeld-BNL-CCNU collaboration, on the
other hand, has reported mcrit

ps . 50MeV with the HISQ action at Nt = 6, based on infinite-volume
scaling with Z(2) exponents. The data extends impressively to mπ = 80MeV.

In view of the contradiction between these results, there is a real need for simulations on finer
lattices, Nt ≥ 12, including a continuum extrapolation, to quantify the size of the first-order region.
• The SU(2) chiral limit at fixed, physical ms.— The HotQCD collaboration [50, 51] reports on a
calculation with the HISQ action at Nt = 6, in which the chiral susceptibility shows no sign of a
first-order phase transition, even at mπ = 80MeV. The results thus point to the standard scenario.
The observables are fitted with O(2) exponents rather than O(4) exponents, due to the taste-splitting
effects of the staggered action.
• The chiral limit in the Nf = 2 theory.— In the limit ms → ∞ one reaches the two-flavor theory.
Here there have been several calculations investigating the nature of the thermal phase transition
in a regime as chiral as possible. O(a) improved Wilson fermions at Nt = 16 lead to a crossover
transition for mπ = 295MeV [24], and so do twisted mass Wilson fermions for a pion mass of
333MeV [32]. Using imaginary chemical potential and the predictivity of tricritical scaling, Bonati
et al. found [52] a critical pion mass of more than 600MeV with Wilson fermions at Nt = 4. Ob-
viously, finite-lattice-spacing effects are a major issue here too. Ch. Pinke and Ch. Czaban have
reported on progress in these studies at Nt = 4 and Nt = 6 at this conference.

The effects of the anomalous breaking of the UA(1) symmetry are expected to be gradually
reduced as the temperature increases. A light η ′ screening mass provides a mechanism that could
make the transition first order when mud → 0. In my view, while it is certainly interesting to study
measures of the anomalous symmetry breaking at T 6= 0, discriminating between the two scenarios
of Fig. 1 still requires direct simulations at small mud .

4. Near-equilibrium properties

While there is hardly an alternative to lattice QCD when it comes to first-principles predictions
for equilibrium properties, out-of-equilibrium aspects of QCD at non-zero temperature are only
indirectly accessible on the lattice. Let J(x) be a local bosonic Hermitian operator; the relation

7
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between the Euclidean correlator G and the spectral function ρ reads

G(x0,~p) =
∫

d3x e−i~p·~x
〈

J(x)J(0)
〉
=
∫

∞

0
dω ρ(ω,~p) K(x0,ω), K(x0,ω) =

cosh[ω(β/2− x0)]

2π sinh[ωβ/2]
.

(4.1)
This equation represents an inverse problem for ρ(ω,~p), given the correlator G. In thermal equi-
librium, its (Kubo-Martin-Schwinger, KMS) relation to the Wightman correlator

ρ(ω,~p) = (1− e−βω)
∫

∞

−∞

dt
∫

d3x eiωt−i~p·~x 1
Z

Tr{e−β Ĥ Ĵ(t,~x) Ĵ(0)} (4.2)

shows explicitly how it encodes real-time information2. Inserting a complete set of (unit-normalized)
energy eigenstates |n〉, the formal expression for the spectral function reads

ρ(ω,~p) =
4π

L3 Z
sinh(βω/2)∑

n,m

∣∣∣〈n
∣∣∣∫

~x
e−i~p·~xĴ(~x)

∣∣∣m〉∣∣∣2 e−β (En+Em)/2
δ (ω− (En−Em)). (4.3)

Such expressions are useful to prove formal relations, such as the connection with the Minkowski-
space correlators. However, what we are after are the collective excitations of the medium, which
are in general not related in a simple manner to the states |n〉. The collective excitations are typically
poles in the frequency variable of the infinite-volume correlator, which depend on the temperature
and are not related in a simple way to the |n〉. For instance, the hydrodynamic excitations associated
with conserved currents have to be there. Furthermore, quasiparticles may exist in the medium:
there may be a pole at (ω = ω~p) with Im(ω~p). Re(ω~p); in that case, vg =

dω~p
d|~p| is its group velocity.

There are media, however, with no quasiparticles.
The inverse problem is numerically ill-posed. The success of the calculation thus depends on

what resolution in the frequency ω one needs to achieve. Physically, resolving the spectral function
on a finer frequency scale means that one understands the real-time evolution of a particular excita-
tion up to a longer time-scale. As an illustrative example, we consider the isoscalar vector channel
with the current Ji =

1√
2
(ūγiū+ d̄γid). At T = 0, detailed information on the spectral function is

provided by e+e− collider data. For ω < 1GeV, the spectral function is completely dominated
by the ω resonance; see Fig. 2, left panel. The spectral function vanishes below the threshold
ω = 3mπ , and remains very small at least until ω = 700MeV. These features are characteristic of
QCD at low energies, and reflect the confinement of quarks. Correspondingly, one expects a very
different form of the spectral function in the high-temperature phase. At sufficiently high tem-
peratures, quarks and gluons are expected to be good quasiparticles. They lead to a characteristic
‘transport peak’ [53, 54] around ω = 0 in the spectral function of some channels; on the other
hand, no meson-like excitations are expected, so that the spectral function goes over smoothly to
the high-frequency perturbative behavior. The expected behavior is represented by the blue curve
in Fig. 2. However, there are strongly-coupled gauge theories where, thanks to the AdS/CFT corre-
spondence, the spectral function can be computed (semi-)analytically [56]. The magenta curve on
the figure shows that no transport peak is present and the function tanh(βω/2)ρii(ω)/ω2 is almost
constant. This behavior reflects the absence of quasiparticles. Whether the QCD spectral function

2In Eq. (4.2), real-time evolution is implied, Ĵ(t) = eiĤt Ĵ e−iĤt . The hadronic tensor W µν (q, p) =
1
2 ∑σN

∫
d4x eiq·x 〈N|Ĵµ (x) Ĵν (0)|N〉, which determines the reaction γ∗Nucleon→ X , is a similar object.

8



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
1
4

QCD at non-zero temperature from the lattice Harvey B. Meyer

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.2  0.4  0.6  0.8  1

ta
n

h
(ω

 /
 2

T
) 

ρ
ii
(ω

,T
) 

/ 
ω

2

ω / GeV

intercept = 3 χs D / T

3 / (2 π)

SND e
+
e

-
 --> π

+
π

−
π

0

wk coupl T=260MeV

N=4 SYM λ=oo

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2

(E
(ω

n
)2

 -
 ω

n
2
)/

 (
2
π
T

ω
n
)

ωn / 2πT

Intercept=1/(2πT D)

AdS/CFT

weak coupling

kinetic theory

Figure 2: Left: The spectral function of the current Ji =
1√
2
(ūγiū+ d̄γid) at zero temperature (e+e− data

from [55]) and in the high-temperature phase of QCD at T = 254MeV. In the latter case two ‘scenarios’
are depicted: one is the spectral function of the R-charge current [56] in the large-Nc N = 4 super-Yang-
Mills theory at infinite coupling (multiplied by the factor (3/Nc)

2); the other is the QCD weak-coupling
prediction, which contains a transport peak [54] due to the existence of quark quasiparticles, and whose
large-ω asymptotic value is 3/(2π). Which scenario is closer to reality at temperatures accessed in heavy-
ion collisions is of central importance to characterize the quark-gluon plasma. Right: The screening mass
E(ωn) in non-static Matsubara sectors ωn 6= 0. The blue curve corresponds to QCD at weak-coupling at a
temperature of 254MeV [23]. The red curve corresponds to the strongly coupled N = 4 SYM theory [57,
58]. The continuation of E(ωn) down to ωn = 0 is expected to yield the inverse diffusion coefficient: the
kinetic-theory prediction of [59] is displayed for the weak-coupling case. The black (straight) line going
through the first two non-static screening masses directly accessible in the Matsubara formalism shows that
a linear extrapolation provides a decent approximation in the strongly coupled case. Both the blue and the
red curve tend to 0 for ωn→ ∞.

at temperatures 200 . T/MeV . 500 accessed in heavy-ion collisions already admits a transport
peak, or instead resembles more a quasiparticle-free spectral function such as the magenta curve is
one of the central questions to answer in thermal QCD.

As a related question, one would like to know from what temperature on the weak-coupling
shape of the spectral function sets in. It is also not a priori clear at what temperature the ω and
other narrow mesons disappear; they may already have disappeared at T = 155MeV, or instead
might survive for a short interval of temperature. The transition to a medium without light meson-
like excitations can also be taken as a definition of deconfinement. For bound states of heavy quarks
(b̄b), due to their small size the dissociation temperature is parametrically higher.
Aspects of the inverse problem.— In practice the correlator is known at some discrete points in time,
G(x(i)0 ). Exploiting the linearity of the problem, we may take linear combinations of Eq. (4.1),

n

∑
i=1

ci(ω̄)G(x(i)0 ) =
∫

∞

0
dω ρ(ω) δ̂ (ω̄,ω)≡ ρ̂(ω̄), δ̂ (ω̄,ω) =

n

∑
i=1

ci(ω̄)K(x(i)0 ,ω). (4.4)

One may now choose the coefficients ci(ω̄) so that the ‘resolution function’ δ̂ (ω̄,ω) is as narrowly
peaked around a given frequency ω̄ as possible. This is the idea behind the Backus-Gilbert method,
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which was recently used in the lattice QCD context [60] (see Refs. therein). One obtains a ‘locally
smeared’ version ρ̂(ω̄) of the spectral function. The optimal resolution function only depends on
the kernel and the x(i)0 ; the required coefficients, however, are then wildly oscillating, requiring
a regularization. An important feature of the method is that it makes no assumption about the
functional form of the spectral function. In fact, in any finite volume the spectral function is a
distribution (see Eq. (4.3)), and only ρ̂(ω̄) has a smooth infinite-volume limit [6]. Note that it is
in general not true that integrating ρ̂(ω) with the kernel K(x0,ω) yields a good description of the
lattice correlator. It is thus also desirable to produce physically reasonable instances of spectral
functions which describe the data with a good χ2.

Usually it is assumed that the spectral function can be approximated by a smooth function,
e.g. via an explicit ansatz or the maximum entropy method [61]. A new Bayesian method was
proposed in [62]; see the talk by S. Kim at this conference. Stochastic methods are being imported
from other fields and adapted to lattice QCD; see the talks by H. Ohno and H.-T. Shu.

4.1 Non-static screening masses

In this section we review some recent progress in the physics interpretation of screening
masses, especially the non-static ones. Consider perturbing the QCD Hamiltonian Ĥ with an ex-
ternal field φ coupling to a local QCD operator Ĵ,

Ĥφ (t) = Ĥ−
∫

d3y φ(t,~y)Ĵ(t,~y), φ(t,~y) = δ (~y)eωt
θ(−t), ω ≥ 0. (4.5)

The latter equation describes a perturbation localized at the origin, starting at t =−∞ and shut off
at t = 0. Let GJJ

E (ωn,~x) be the Euclidean correlator, taken as a function of Matsubara frequency ωn

and spatial separation~x. Linear response theory leads to the following prediction for the change in
the expectation value of the operator Ĵ due to the external perturbation (see e.g. [6],

δ

〈
J(t = 0,~x)

〉
= GJJ

E (ωn,~x), for ω = ωn = 2πT n. (4.6)

This equation provides the physics interpretation of the static (ωn = 0) and non-static Euclidean
correlators. In particular, the correlation length in Matsubara sector ωn is the length scale over
which a perturbation with the time dependence eωnt is screened (n ≥ 0). Eq. (4.6) also shows that
the dependence of the correlation length on ω can naturally be continued to continuous values of
ω – even though it is not directly accessible in the Matsubara formalism.

It is well-known that linear response, along with Fick’s law ~J = −D∇J0 as a constitutive
equation for the vector current ~J, implies the existence of a diffusion pole in the retarded correlator
of the charge density J0 [6]. Let E(ωn) be the inverse correlation length of J0 in Matsubara sector
ωn. In position space, one obtains

GJ0J0
E (ωn,~x)

ωn→0,~x→∞
= −χs E(ωn)

2 e−E(ωn)|~x|

4π|~x|
with E(ωn)

2 ωn→0∼ ωn

D
. (4.7)

Thus the hallmark of a diffusion pole is that an external perturbation with the time dependence eωt

coupling to J0 is screened over a distance which diverges as
√

D/ω when ω → 0.
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Assuming that the diffusion pole exists and is continuously connected to the n = 1 Matsubara
sector, the observation above suggests a new method to extract the diffusion coefficient3. If the
correlation length can be determined as a function of the Matsubara frequency and continued to
small frequencies, then 1/D can be obtained as the slope of the graph of E(ωn)

2 at ωn = 0. An
advantage of this approach is that at very high temperatures, where E(ωn) ' ωn for ωn ≥ 2πT ,
the correct result 1/D = 0 is obtained; this is in contrast with the method based on the spectral
function, where an extremely narrow transport peak would have to be resolved.

This exercise has been carried out [58] in the strongly coupled N = 4 SYM theory and shown
to reproduce the known result D = (2πT )−1 [57]. In QCD at weak coupling, the relevant screening
masses have been computed to O(g2) [23]; see the right panel of Fig. 2. This calculation is limited
to the regime where ωn is much larger than the Debye mass. On the other hand, the weak coupling
result [59] for the diffusion coefficient is also displayed. A turnover of the curve representing the
screening masses must occur if it is to make contact with kinetic theory.

Screening masses (static and non-static) in the vector channel have been calculated recently
in the high-temperature phase of Nf = 2 QCD on fine lattices [23]. The O(g2) predictions for the
non-singlet static screening masses at weak coupling were made in [26], and these calculations
were extended to the non-static sectors in [23]. The basic physics of these states is that they form
non-relativistic bound states of size O(m−1

E ) from the point of view of a 2+1 dimensional effective
theory, where mE is the Debye screening mass. Fairly good agreement is found between the weak-
coupling predictions for the screening masses and the lattice results in the non-static Matsubara
sector n = 1. An interesting connection between the weak-coupling calculation of the screening
masses and the dilepton production rate [63] was discovered [23], which led to the realization that
the same potential entering the latter [64], which was computed non-perturbatively in [65], also
determines the spectrum of non-static screening masses. Using this non-perturbatively computed
potential improved the agreement with the lattice QCD results. The residues of the screening states
in the vector correlation function, which are determined by the wave function of the non-relativistic
bound state at the origin, were however found to be significantly larger than the weak-coupling
calculations indicates, showing that the states are more tightly bound than at weak-coupling.

4.2 Numerical studies of spectral functions

In the following, several channels are discussed where progress has recently been made. I
address the channels in what I believe is an increasing order of difficulty. We start with the case of
the pion in the low-temperature phase, where chiral effective theory provides theory guidance. Fur-
thermore, the pion parametrically dominates the Euclidean correlators of the axial charge density
ψ̄γ0γ5τaψ and of the pseudoscalar density ψ̄γ5τaψ .
The pion quasiparticle in the low-T phase.— Consider QCD in the SU(2) chiral limit at tempera-
tures T < Tc; recall that there must be a sharply defined phase transition, since the chiral condensate
〈ψ̄ψ〉 is an order parameter. The spontaneous breaking of chiral symmetry implies the presence of
a divergent spatial correlation length (Goldstone theorem). Somewhat less obvious is the fact that
a massless real-time excitation exists, the pion quasiparticle. At small quark masses m, the inverse

3Since the shear channel also contains a diffusion pole, the same argument applies, with D replaced by η/(e+ p),
η being the shear viscosity and e+ p the enthalpy density.
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spatial correlation length (or ‘pion screening mass’ mπ ) is of order mπ ∼
√

m. The low-momentum
dispersion relation of the pion quasiparticle then has the form [66]

ω~p = u(m2
π +~p2)1/2, (4.8)

with u a temperature-dependent parameter; it is unity at T = 0 by Lorentz symmetry. In the chiral
limit, u corresponds to the group velocity of the pion. Thus a single parameter determines both the
quasiparticle mass/screening mass ratio ω~0/mπ and the |~p| dependence of the quasiparticle energy.

Exploratory calculations [28] and a more accurate calculation [60] in two-flavor QCD with a
zero-temperature pion mass of 270MeV (at T = 170MeV, which is below Tc) show that u ≈ 0.74
is significantly smaller than unity. Also, the pion quasiparticle is found to be about 16% lighter
than the zero-temperature pion. This finding contradicts the picture of the hadron resonance gas
model, in which the excitations of the medium are taken to be the same as at T = 0. Recently,
evidence was found that the spectral density in the negative-parity nucleon sector also exhibits a
significant change below Tc [67]. However, these findings are not necessarily inconsistent with the
HRG model providing successful predictions for equilibrium quantities [60].
The heavy-quark diffusion constant.— Significant progress has also been made in the study of the
diffusion of a heavy quark in the quark-gluon plasma. Heavy-ion collision phenomenology shows
that in spite of their heavy mass, charm quarks are ‘dragged along’ by the medium, so that they
too exhibit an azimuthally anisotropic distribution [68]. The ‘kicks’ of the medium on the heavy
quarks therefore have to be strong enough for it to equilibrate.

More precisely, in the static quark limit, the ‘kicks’ are determined by the color-electric force
acting on the worldline of the heavy quark [69]. The autocorrelation of the force ultimately deter-
mines the diffusion constant D of the heavy quark via an Einstein relation,

G(x0) =

〈
ReTr

(
U(β ,x0)gEk(x0,~0)U(x0,0)gEk(0,~0)

)〉
−3 〈ReTrU(β ,0)〉

=
∫

∞

0
dω ρ(ω)K(x0,ω),

κ = lim
ω→0

T ρ(ω)/ω, D = 2T 2/κ. (4.9)

Here U(tf, ti) is the static quark propagator and ~E the color-electric field. The spectral function
has been calculated at next-to-leading order in perturbation theory [70]. It is found to be a smooth
function at all frequencies. This represents an advantage for lattice calculations, since resolving
narrow features in the spectral function is difficult. On the other hand, the coefficient κ has been
calculated at NLO [71], and exhibits poor convergence at realistic values of the strong coupling.

Since the early lattice calculations [72], continuum-extrapolated data have been analyzed in
quenched QCD [73, 74]. As compared to the NLO calculation, additional spectral weight is re-
quired at low frequencies to describe the data. The analysis yields 1.8 ≤ κ/T 3 ≤ 3.4. Although
phenomenologically, radiative energy loss must be taken into account too, this range is in the right
ballpark to explain the spectrum and anisotropic flow of heavy quarks.
The vector channel and the dilepton production rate.— The rate of production of dilepton pairs
via virtual photons from a thermal medium is directly proportional to the spectral function ρµ

µ

of the electromagnetic current Jµ (see e.g. [54] for a derivation). Since the medium produced in
heavy-ion collisions appears to be in approximate local thermal equilibrium, a weighted average of
the spectrum of dileptons over a range of temperatures is obtained; see for instance [75].
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We will focus here on correlators of the spatial, non-singlet current Ji at vanishing spatial
momentum, although preliminary results at non-vanishing spatial momentum on fine, quenched
ensembles have been presented by Fl. Meyer at this conference. At zero-temperature, the spectral
function ρii is dominated by the ρ meson below ω = 1GeV. The main effect found in recent cal-
culations [76, 77] is a shift of the spectral weight from the ρ-meson region to the low-frequency
region ω . T as the temperature increases. The lattice data in the high-temperature phase is con-
sistent with a spectral function containing the sum of a fairly broad transport peak [76, 77, 78] and
the cut contribution ∝ ω2; such a spectral function lies somewhere between the two thermal sce-
narios depicted in Fig. 2. Estimates of the electric conductivity and the diffusion coefficient D have
been presented. An important limitation of calculations in dynamical QCD is the lack of a contin-
uum limit of the Euclidean correlator; the continuum limit has been taken in quenched QCD [78].
Even setting this issue aside, uncertainty remains on whether the (infinite-volume) spectral function
really is as smooth as the published results suggest.

A scenario where the methods used so far would yield completely incorrect results for the
electrical conductivity is if a small fraction of the degrees of freedom contributing to the static sus-
ceptibility had a very long mean-free-path; this would be extremely hard to detect in the Euclidean
correlator and would lead to a much larger conductivity than the commonly used methods suggest.
At the same time, in a relatively fast hydrodynamic evolution of the system, such degrees of free-
dom would then simply be frozen and not thermalize locally with the rest of the medium. Thus the
large diffusion coefficient in this scenario would also be less relevant. It seems implausible to me
that such weakly coupled degrees of freedom exist in the high-T phase of QCD.

Kinetic theory, which assumes the existence of weakly interacting quasiparticles, predicts the
presence of a transport peak in the spectral function, with an area

∫
Λ

0
dω

πω
ρii(ω) equal to χs〈v2〉,

where 〈v2〉 is the mean-square velocity of the quasiparticles [79]4. If the quarks and gluons are
the relevant quasiparticles at some temperature above Tc, 〈v2〉 ≈ 1 and the spectral weight of the
transport peak is known to a reasonable approximation. Thus if a transport peak is resolved and has
a spectral weight in the expected range, one can be quite confident in the result. The main challenge
at high temperatures is thus to convincingly resolve the transport peak of quark and gluons.

The thermal modification ∆ρ(ω,~k,T ) ≡ ρ(ω,~k,T )− ρ(ω,~k,0) of the spectral functions in
the vector and axial-vector spectral functions is constrained by sum rules. If we define the lon-
gitudinal and transverse spectral functions of the isovector vector V a

µ = ψ̄γµ
τa

2 ψ and axial-vector
Aa

µ = ψ̄γµγ5
τa

2 ψ currents via

1
3

∫
d3x e−i~k·~x 〈V a

0 (x)V
a
0 (0)〉 =

∫
∞

0
dω ρ

L
V (ω,~k,T )K(x0,ω), (4.10)

−1
6

(
δil− kikl/~k2

)∫
d3x e−i~k·~x 〈V a

i (x)V
a
l (0)〉 =

∫
∞

0
dω ρ

T
V (ω,~k,T )K(x0,ω), (4.11)

1
3

∫
d3x e−i~k·~x 〈Aa

0(x)A
a
0(0)〉 =

∫
∞

0
dω ρ

L
A
(ω,~k,T )K(x0,ω) (4.12)

we have the sum rules [80, 28],

1
2π

∫
∞

−∞

dω ω ∆ρ
L
V (ω,~k,T ) = 0, ∀~k (4.13)

4The cutoff Λ is a separation scale between the inverse mean-free-time and the thermal scale.
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1
2π

∫
∞

−∞

dω

ω
∆ρ

L
V (ω,~k,T ) = χs−κl~k2 +O(|~k|4), (4.14)

1
2π

∫
∞

−∞

dω

ω
∆ρ

T
V (ω,~k,T ) = κt~k2 +O(|~k|4), (4.15)

1
2π

∫
∞

−∞

dω ω ∆ρ
L
A
(ω,~k,T ) = −m〈ψ̄ψ〉

∣∣∣T
0
, ∀~k. (4.16)

A physics interpretation of κl and κt in terms of screening/antiscreening of electric probe charges
and currents placed in the medium exists [27]. These sum rules have been used to constrain the
thermal change in the spectral functions. Note that at vanishing spatial momentum, ρT = 1

3 ρii and
Eq. (4.15) simplies to

∫
∞

0
dω

ω
∆ρii(ω,T ) = 0.

Quarkonium in the high-temperature phase.— The physics of quarkonium in the high-temperature
phase has a long history in the heavy-ion community [81]. At what temperature different c̄c and
b̄b quasiparticles melt provides a ‘thermometer’ in heavy-ion collisions: p-wave bound states are
expected to ‘melt’ at a lower temperature than s-wave bound states. A sequential suppression of the
ϒ states has been observed in dimuon spectra by CMS [82], providing an interval for the maximum
temperature reached in Pb+Pb collisions.

The mechanism of the disappearance of Q̄Q quasiparticles has been investigated in detail at
weak coupling (see [83] and Refs. therein). The Debye screening of the Q̄Q potential and the
scattering with the partons of the medium induce a decrease of spectral weight at treshold in the
spectral function of Q̄~γQ (see Fig. 2 of [84]).

Charmonium quasiparticles have mostly been studied using the full relativistic formulation
(e.g. in quenched QCD [85], and in Nf = 2+ 1 QCD with heavy Wilson fermions[86]). S-wave
charmonium quasiparticles show up in the spectral function up to about 1.4Tc. We note that the
sum rule (4.15) applies in the J/ψ channel and could be used to constrain the thermal changes to
the spectral function.

S. Kim presented a study in non-relativistic QCD (NRQCD) at this conference. The pros of
using NRQCD are that the exponential kernel G(x0) =

∫
∞

−2mQ
dω

2π
e−ωx0 ρ(ω) allows for a better

ω-resolution; that ρ(ω) is softer in the ultraviolet than in the relativistic theory; that ρ(ω) does not
contain a transport peak; and that very accurate data can be obtained. All this makes the NRQCD
correlator more sensitive to changes in the spectral weight near the Q̄Q threshold. On the downside,
dealing with cutoff effects is more delicate in NRQCD.

Bottomomium quasiparticles, due to their large mass, have been addressed using the effective
field theories NRQCD and potential NRQCD (pNRQCD). A recent NRQCD calculation [87] in
2+1 flavor QCD with mπ = 400MeV finds that while the ground state ϒ (JPC = 0−+) survives at
least up to 2Tc, the χb1 (JPC = 1++) melts immediately above Tc. Ref. [88] on the other hand finds
that the χb1 survives for some interval of temperature above Tc. Part of the difficulty is that the
spectral weight near threshold does not seem to be the dominant one. It would be interesting for
future studies to quote the integral of the spectral function over the threshold region, since it is less
sensitive to the method used for the inverse problem. Finally, we note that a pNRQCD calculation
on the 2+1 flavor ensembles of the HotQCD collaboration has recently emerged [89].
The nucleon channel.— While many bosonic channels have been investigated, the fermionic chan-
nels have received very little attention until recently [67, 90]. One motivation for looking at baryon
correlation functions is that they are a probe of chiral symmetry restoration. To be specific, let
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ON+ = 1
2(1+ γ0)εabc(uaCγ5db)uc be a nucleon interpolating operator (it has an intrinsic positive

parity). Consider then its two-point function and corresponding spectral representation [67],

G(x0) =
∫

d3x 〈ON+(x) ŌN+(0)〉=
∫

∞

0

dω

2π

1
1+ eω/T

[
ρ+(ω)e−ωx0−ρ−(ω)e−ω(β−x0)

]
. (4.17)

The restoration of chiral symmetry implies parity doubling: G(β−x0) =G(x0). Therefore the ratio
R(x0) =

G(x0)−G(β−x0)
G(x0)+G(β−x0)

is an order parameter for chiral symmetry restoration. The same argument
applies to static correlators [90], which addresses the degeneracies between screening masses.

Both the static correlators (in a quenched study [90]) and the temporal correlators [67] exhibit
the expected behavior that the ratio R starts to drop rapidly at T = Tc. Approximating the spectral
functions ρ+ and ρ− by a single Dirac delta-function A±δ (ω −m±) also show that the relative
mass difference (m−−m+)/(m−+m+) drops as Tc is approached from below [67]. While little
thermal change was found in the positive-parity sector, in principle even the nucleon acquires a
thermal width through resonant collisions with the pions of the medium, Nπ ←→ ∆.

How strongly baryon quasiparticles are modified below Tc, and whether any of them survive
for a short interval of temperature above Tc would be as interesting to know as for the mesons. It
may also help understand what happens when a baryon chemical potential is turned on.

5. Conclusion

A lot has been learnt about thermal QCD from the lattice. It turns out that the crossover nature
of the QCD thermal transition is a very robust feature with respect to varying the quark masses.
Efforts to determine the nature of the transition at very small mud are ongoing. For definitive results,
I believe simulating at several lattice spacings a . 0.08fm will be required. For a lattice action with
exact chiral symmetry, the requirements can perhaps be relaxed somewhat.

There has been significant progress in the study of near-equilibrium properties via spectral
functions. Lattices with Nt ≈ 24 points in the Euclidean time direction have become available, the
continuum limit has been taken in quenched QCD and the statistical precision in several channels
is now at the permille level. Statistical errors have decreased by an order of magnitude since 2007.

There were many interesting talks about finite-temperature, and indeed about finite-density
QCD at this conference, demonstrating the vitality of the field. I thank the organizers for the invi-
tation and for running a very pleasant and informative conference. My own research is supported
by the DFG grant ME 3622/2-1 Static and dynamic properties of QCD at finite temperature.
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