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1. Introduction

Domain wall fermions have good chiral symmetry properties but are expensive to simulate.
Domain wall fermions introduce an unphysical fifth dimension with size Ls. Larger values of Ls

give smaller chiral symmetry breaking but the cost of simulating the quark determinant is propor-
tional to Ls. In this talk we discuss two attempts to achieve the good chiral symmetry properties of
a large-Ls domain wall simulation without paying the full cost. We focus on speeding up the hybrid
Monte Carlo (HMC) evolution.

2. HDCG in HMC evolution

The first technique we discuss is deflation of the light quark solves in the evolution. Most
of the computational effort in the evolution is spent on inverting the light quark Dirac operator.
A standard technique for speeding up such inversions is deflation. Deflation removes the lowest
eigenmodes of the Dirac operator from the problem, speeding up the inversions by reducing the
condition number. To apply deflation we have to spend some time actually calculating these low
modes. The cost of this calculation can easily be amortized if we are doing many inversions on a
single gauge field configuration. However in an evolution we only do a single inversion on each
configuration. It may therefore be difficult to amortize the setup cost. We can try to keep old low
modes around and use them to deflate solves on new, changed gauge configurations, but the low
modes will presumably grow gradually “stale” as the gauge configuration changes.

Deflation has been applied to HMC evolution with Wilson fermions in [1]. We attempted
to apply deflation to the evolution of a 2+1+1 flavor domain wall ensemble on a 323× 64 lattice
with Ls = 24 and 1/a ≈ 3 GeV. We used Peter Boyle’s hierarchically deflated conjugate gradient
(HDCG) algorithm, a multigrid-like deflation technique designed for domain wall fermions [2].

As with all deflation methods, there is a tradeoff between the setup time and the solve time.
Spending more time on setup increases the number and quality of low modes calculated and there-
fore decreases the time for later solves. One must experiment to determine the optimal amount
of time to spend on setup. A useful technique is that the setup does not need to be re-done from
scratch each time; rather, we can start from the previous low-mode subspace and “refine” the old
low modes to get low modes on the new, changed gauge configuration. This makes setup faster and
so allows us to run it more often.

In our case, we were unable to achieve a speedup by including HDCG in the evolution. While
it was possible to tune the algorithm parameters so that the deflated evolution broke even with the
original evolution, we did not achieve a speedup. There were two reasons for this. One is that
it was not possible to amortize the setup time over enough solves. As Figure 1 shows, the low
modes grow rapidly stale, so that after only 0.1 MD time units deflated solves are no faster than
undeflated solves. Given our time step, this meant that we had only about 4 solves over which to
amortize the setup cost. The second problem was that the HDCG algorithm requires us to calculate
the projection of the Dirac operator to the low mode subspace every time the gauge field changes.
This is a nontrivial cost which must be paid before each inversion.

It is possible that future work will overcome these difficulties. One concern that we did not
investigate is that the use of deflation presumably makes the evolution non-reversible unless the
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Figure 1: Times for light quark inversions during an HMC trajectory. In the HDCG evolution, the low
mode subspace is computed at time zero and these low modes are used throughout the trajectory. Solve time
increases as the gauge field changes and these low modes grow “stale.” Deflation only helps for the first 0.1
units of MD time. Therefore the setup must actually be rerun every 0.1 MD time units.

Dirac operator inversions are done to high precision. Since reversibility is important to the cor-
rectness of the simulation, this may be another obstacle to using deflation. Reversibility can be
regained by tightening the stopping conditions for the solves, but this will increase the solve time,
which might wipe out the gains of deflation.

3. Ls-splitting of light quark determinant

We now turn to another technique. In [3] it is suggested that domain wall evolutions may be
sped up by splitting the light quark determinant into factors with different Ls.

This technique relies on the domain wall-overlap correspondence (see [3]). Consider a do-
main wall Dirac operator DDW (m,Ls) with quark mass m and fifth dimension extent Ls. This
operator acts on five-dimensional fermion fields. Corresponding to each such operator there is a
four-dimensional “effective overlap operator” Dov(Ls) such that

det
[

DDW (m,Ls)
DDW (1,Ls)

]
5D

= det[Dov(Ls)]4D (3.1)

In the Ls → ∞ limit, Dov(Ls) becomes the true overlap operator [4]. Dov is easily implemented
explicitly.

This four-dimensional operator lets us manipulate the domain wall fermion determinant as
follows. Pick a new L′s smaller than the original Ls and write
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det
[

DDW (m,Ls)
DDW (1,Ls)

]
5D

= det[Dov(Ls)]4D

= det[Dov(L′s)]4D×det
[

Dov(Ls)
Dov(L′s)

]
4D

= det
[

DDW (m,L′s)
DDW (1,L′s)

]
5D
×det

[
Dov(Ls)
Dov(L′s)

]
4D

(3.2)

The first term of the final expression is a regular 5D domain wall determinant at a smaller, and
thus cheaper, L′s. The second term is a 4D correction determinant which accounts for the different
between L′s and the original Ls.

If Dov(L′s) ≈ Dov(Ls), then the second determinant is always close to 1. The molecular dy-
namics forces corresponding to such a determinant are small and the correction determinant can
be simulated on a large time step and therefore at relatively low cost. If the cost of the correction
determinant is low enough then the above splitting of the original determinant gives a net speedup.

It is important to realize that we have not changed the fermion action, only our strategy for
simulating it. To carry out this strategy we need to find a Dov(L′s) with L′s < Ls such that the
reduced-Ls effective overlap operator closely approximates the original effective overlap operator.
In some sense this is true for any possible Dov(L′s). After all, any effective overlap operator is an
approximation to the true overlap operator, so any two effective overlap operators should be fairly
good approximations to each other.

4. zMöbius

It is possible to do better, however: we can tune the reduced-Ls operator to more closely match
the original operator. To see how to do this we recall that the effective overlap operator for domain
wall fermions can be written

Dov =
1
2
[1+m+(1−m)ε(H)] (4.1)

where H, the “Shamir kernel”, is defined in terms of the Wilson Dirac operator DW with a large
negative mass −M5:

H =
γ5DW (−M5)

2+DW (−M5)
(4.2)

Above, ε(x) is an approximation to the sign function |x|/x. As Dov converges to the true overlap
operator, the ε(x) converges to the true sign function. From this we can see that matching two
effective overlap operators means matching their sign functions.

For “plain” domain wall fermions the sign function approximation is

ε(x) =
(1+ x)Ls− (1− x)Ls

(1+ x)Ls +(1− x)Ls
(4.3)

For the Möbius generalization of domain wall fermions, the sign function becomes
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ε(x) =
f (x)− f (−x)
f (x)+ f (−x)

(4.4)

where

f (x) =
Ls

∏
i=1

(ωi + x) (4.5)

The ωi are complex numbers that can be chosen arbitrarily by adjusting coefficients in the definition
of the Möbius domain wall fermion operator.

We can use the Remez algorithm to tune the ωi to optimally approximate any original sign
function. That is, given a domain wall operator with some Ls with sign function ε(Ls)(x), we can
find a reduced-Ls Möbius operator with sign function ε(L′s)(x) such that

ε
(L′s)(x)≈ ε

(Ls)(x) (4.6)

This is the “zMöbius” technique; it was developed in [5].1

This approximation can often be made quite precise. In Figure 2 we show the absolute dif-
ference between an Ls = 24 sign function and and L′s = 12 sign function tuned to approximate it.
The difference is everywhere less than 10−5. If desired the accuracy of the approximation can be
concentrated in the region of highest eigenvalue density for the kernel operator H. We show an
example of this in Figure 3.

Given that we can approximate a large-Ls sign function ε(Ls)(x) with a reduced-Ls sign function
ε(L′s)(x), might it be better to just simulate at the reduced Ls directly? Our strategy has several
advantages. One is that we can adjust the reduced-Ls sign function according to the observed
eigenvalue distribution of the kernel without actually changing the true action. Another advantage
is that if we wish to simulate several ensembles along a scaling trajectory, we can use the same
overall action on each while adjusting the underlying reduced-Ls operator according to the kernel
eigenvalue distribution at each a. Finally, this technique allows us to use a simple true action which
is easily specified by a few parameters, while underneath we accelerate the simulation using a
complicated action with many adjustable parameters (L′s and the {ωi}).

5. Simulation strategy and results

The Ls-splitting strategy described above splits the fermion determinant into a regular 5D
domain wall determinant at reduced Ls and a 4D correction determinant. When we apply this
strategy to the two-flavor light quark determinant the two-flavor correction determinant is

det
[

Dov(Ls)†Dov(Ls)
Dov(L′s)†Dov(L′s)

]
4D

∝

∫
Dφ

†Dφ exp

(
−φ

†
[

Dov(Ls)†Dov(Ls)
Dov(L′s)†Dov(L′s)

]−1

φ

)
(5.1)

The above equation shows how we simulate the correction determinant using a single 4D pseud-
ofermion field φ .

1The “z” indicates the fact that the optimal ωi maybe actually be complex.
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Figure 2: The absolute difference |ε(Ls=24)(x)− ε(L′s=12)(x)| between two approximate sign functions. The
L′s = 12 sign function has been tuned using the Remez algorithm to approximate the Ls = 24 sign function as
closely as possible. Quite good accuracy is achieved: the absolute difference is everywhere less than 10−5.
The range of x values plotted corresponds to the range of eigenvalues of the Shamir kernel.
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Figure 3: The absolute difference |ε(Ls=24)(x)−ε(L′s=12)(x)| between two approximate sign functions. Here
we adjust the Remez algorithm to concentrate the accuracy of the approximation on the regions of high
eigenvalue density of the Shamir kernel. In addition to the difference of sign functions we plot the eigenvalue
density of the Shamir kernel. Compared to Figure 2, the sign function difference has been made much
smaller (order 10−6) in the region of highest eigenvalue density, at the cost of slightly larger errors in regions
of lower eigenvalue density.

The zMöbius approximation to the original sign function is extremely good, meaning that the
molecular dynamics forces coming from this determinant are tiny. In fact we can get away with
neglecting this force completely and only including the correction determinant in the accept/reject
step of the HMC. This is feasible because the typical variation in the correction determinant pseud-
fermion action over the course of a trajectory is typically much smaller than one, even on large
lattice volumes.

We have observed a 30% reduction in the cost of the light quark determinant by using this
strategy with Ls = 24 and L′s = 12 on a 323×64 2+1+1 flavor domain wall ensemble with 1/a = 3
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GeV. Naively we might expect a 50% cost reduction because Ls is being decreased by 50%. How-
ever we observe that the iteration count of the conjugate gradient inversions increases somewhat,
and we end up with only a 30% cost reduction. In fact to avoid an even larger increase in the CG
iteration count we need to adjust the preconditioning scheme used in these inversions (see [5]).

We are now using this strategy for the light quark determinant in a large-scale RBC/UKQCD
physical point 2+1+1 flavor domain wall ensemble with 1/a ≈ 3 GeV and lattice size 80× 80×
96× 192. In this run we use Ls = 32 and L′s = 14.2 Even on this large volume, our strategy of
neglecting the force from the correction determinant works well. The fluctuations of the correction
pseudofermion action along a single trajectory are of order 3× 10−2 which is much less than
1. This means that neglecting the molecular dynamics force of the correction determinant is not
significantly affecting the acceptance rate.

6. Conclusion

We have described two attempts to speed up HMC evolutions of domain wall fermion en-
sembles. The first attempt, deflation in the evolution using the HDCG algorithm, did not succeed
because the low modes we computed went “stale” too quickly as the gauge field evolved. The
second attempt, Ls-splitting of the light quark determinant along the lines suggested by Brower et
al. in [3], did produce a 30% reduction in the cost of the light quark determinant and is now in
production.
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2Ls is large here because we have included a “dislocation-enhancing determinant” to promote topology change.
Dislocations increase the residual chiral symmetry breaking of domain wall fermions and we use large Ls to compensate.
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