
P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
2
2

Optimizing the domain wall fermion Dirac operator
using the R-Stream source-to-source compiler

Meifeng Lin∗a, Eric Papenhausenb, M. Harper Langstonc, Benoit Meisterc, Muthu
Baskaranc, Taku Izubuchid,e and Chulwoo Jungd

aComputational Science Center, Brookhaven National Laboratory, Upton, NY 11973, USA
bDepartment of Computer Science, State University of New York, Stony Brook, NY 11794, USA
cReservoir Labs Inc., New York, NY 10012, USA
dPhysics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
eRIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
E-mail: mlin@bnl.gov, epapenhausen@cs.stonybrook.edu,
langston@reservoir.com, meister@reservoir.com,
baskaran@reservoir.com, izubuchi@bnl.gov, chulwoo@bnl.gov

The application of the Dirac operator on a spinor field, the Dslash operation, is the most
computation-intensive part of the lattice QCD simulations. It is often the key kernel to optimize
to achieve maximum performance on various platforms. Here we report on a project to optimize
the domain wall fermion Dirac operator in Columbia Physics System (CPS) using the R-Stream
source-to-source compiler. Our initial target platform is the Intel PC clusters. We discuss the
optimization strategies involved before and after the automatic code generation with R-Stream
and present some preliminary benchmark results.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:mlin@bnl.gov
mailto:epapenhausen@cs.stonybrook.edu
mailto:langston@reservoir.com
mailto:meister@reservoir.com
mailto:baskaran@reservoir.com
mailto:izubuchi@bnl.gov
mailto:chulwoo@bnl.gov

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
2
2

Optimizing the domain wall fermion Dirac operator using R-Stream Meifeng Lin

1. Introduction

Lattice QCD (LQCD) community has traditionally produced very efficient home-grown soft-
ware and is continuing to do so. With the advent of new hardware architectures, significant efforts
are required to optimize the LQCD software for new systems. One way to deal with this is to
rewrite the software to be future-proof, which inevitably needs significant initial investments to
develop a software suite that is portable, flexible, adaptable and, most importantly, performant for
different architectures. Another way, perhaps complementary to the first approach, is to develop or
use existing high-quality automatic code generators that are capable of producing efficient codes
for a target architecture from generic, high-level, user codes. The latter will help to port an existing
application to a new architecture quickly, and ideally with good performance.

Numerical LQCD computations are dominated by the application of the Dirac operator matrix
D on a fermion field vector ψ , the so-called Dslash operation. It is often the key kernel to optimize
for maximum performance, as the Dslash operation typically accounts for more than 90% of the
execution time in LQCD simulations. In this work we explore the feasibility and efficiency of
using the R-Stream source-to-source compiler being developed by Reservoir Labs Inc to optimize
the Dslash code in the Columbia Physics System (CPS) [1]. This report is organized as following.
After a brief introduction to R-Stream in Section 2, we present the details of the application of R-
Stream to the Wilson Dslash and the Domain Wall Fermion (DWF) Dslash in Section 3. Section 4
discusses SSE and AVX SIMD vectorizations on the R-Stream generated code. In Section 5 we
show the performance benchmarks for the single-node Wilson and DWF Dslash. And we conclude
in Section 6.

2. The R-Stream Source-to-Source Compiler

R-Stream [2] is a source-to-source compiler that generates target-specific optimized source
codes based on the polyhedral mapping for computer programs [3, 4]. It takes a serial C code as
input, generates the dependence graph using the polyhedral model, and can perform optimizations
ranging from loop-level parallelism, tiling to memory management. The outputs of R-Stream may
be C code threaded with OpenMP to run on CPUs, or CUDA C for NVIDIA GPUs. These out-
puts can then be processed by a low-level compiler such as icc, gcc or nvcc. The advantage of
using a high-level code generator such as R-Stream is that the source code generated can be tuned
and further optimized before sending it to a low-level compiler, allowing user-in-the-loop opti-
mizations. For more details of the types of optimizations R-Stream can perform and the process
involved, readers can refer to [2, 5, 6].

3. Application of R-Stream to Dslash Operators in CPS

Our first application of R-Stream is the Wilson Dslash operator, which is the kernel operator
in many lattice fermion formulations, including the domain wall fermion formulation used in many
of the lattice simulations performed by the RBC and UKQCD collaborations. The Wilson quark
Dirac matrix can be written as

M = (Nd +mq)−
1
2

D, (3.1)

2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
2
2

Optimizing the domain wall fermion Dirac operator using R-Stream Meifeng Lin

where Nd is the space-time dimension and mq is the input quark mass. The Wilson Dslash operator,
D, in four space-time dimensions is defined as

Di j
αβ

(x,y) =
4

∑
µ=1

[
(1− γµ)αβUµ

i j(x)δx+µ̂,y +(1+ γµ)αβU†
µ

i j
(x+ µ̂)δx−µ̂,y

]
, (3.2)

where x and y are the coordinates of the lattice sites, α,β are spin indices, and i, j are color indices.
Uµ(x) is the gluon field variable and is an SU(3) matrix. In CPS, the complex fermion fields are
represented by one-dimensional arrays with size LX LY LZLT × SPINS×COLORS× 2 for the un-
preconditioned Dirac operator, where LX ,LY ,LZ and LT are the numbers of lattice sites in the x,y,z
and t directions, respectively. SPINS and COLORS are the numbers of spin and color degrees of
freedom, typically 4 and 3 respectively. With even-odd preconditioning, the array sizes are cut in
half.

The domain wall fermion (DWF) Dirac matrix Mx,s;x′,s′ is defined as

Mx,s;x′,s′ = δs,s′M
‖
x,x′+δx,x′M⊥s,s′ , (3.3)

where s,s′ label the extra fifth dimension, and the 4D DWF Dslash is defined as

M‖x,x′ = −
1
2

4

∑
µ=1

[
(1− γµ)Ux,µδx+µ̂,x′+(1+ γµ)U

†
x′,µδx−µ̂,x′

]
+(4−M5)δx,x′ . (3.4)

Note that Eq.(3.4) is just the Wilson Dirac operator in Eq.(3.1) with a negative mass mq ≡ −M5

and is independent of s. The hopping term in the fifth dimension is defined as

M⊥s,s′ = −
1
2

[
(1− γ5)δs+1,s′+(1+ γ5)δs−1,s′−2δs,s′

]
+

m f

2

[
(1− γ5)δs,Ls−1δ0,s′+(1+ γ5)δs,0δLs−1,s′

]
. (3.5)

As the 4D DWF Dslash dominates DWF calculations, we first focused on its optimization.
The input we gave to R-Stream was the noarch version of the Wilson Dslash operator in CPS,

which is an unoptimized serial C code. For the polyhedral mapping to work, the array accesses have
to be affine functions of the outer loop indices so that the dependence can be constructed as a system
of linear equations. The array access in CPS breaks affinity, as the array index for the lattice site
(x,y,z, t) has to be calculated as products of the array indices. To overcome this, we cast the linear
arrays as multi-dimensional pointers in C, which gives us the performance of linear arrays but gives
R-Stream the readability of multi-dimensional arrays.

Another change we had to make to the input Dslash code was to remove the modulo operations
when the lattice boundaries are involved. For example, in the x direction, the Dslash operation for
the site x = LX − 1 requires the access to the fermion vector at site x = 0, which is done by x %

LX. Similarly, access to x = LX−1 is needed when Dslash operates on x = 0. To preserve affinity,
we padded each boundary with the value at the opposite boundary. The new fermion arrays have a
size LX +2 in the x direction, with psi[0] containing the value of x = LX−1, and psi[LX+1]
containing the value of x = 0. Similarly for the other directions. For the gauge field, since only
the neighbor in the forward direction is needed, we only need to introduce padding for one side of

3

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
2
2

Optimizing the domain wall fermion Dirac operator using R-Stream Meifeng Lin

the boundaries, resulting in a new array length of L+ 1 in each of the space-time directions. The
downside of the data padding is that the memory footprint is increased substantially, especially
when local lattice volume is small. However, when the memory increases the most (small local
volume) is also when the total memory footprint is small, even though the percentage increase may
be large. So having padding does not affect the problem size we are able to simulate greatly.

With the above two modifications, R-Stream was able to analyze the input code and generate
outputs based on the user guidance. Details of how to use R-Stream and how the user can affect
the optimization strategies are beyond the scope of these proceedings, and we refer the readers
to Refs. [2, 6] for further information. The R-Stream generated code included automatic loop
tiling and unrolling. While the performance of the R-Stream output was a bit better than the input
unimproved serial code, it was much inferior to a version of a hand-optimized CPS code which has
SSE intrinsics. To fully exploit the performance offered by the modern computer architectures, it is
imperative for us to take advantage of their SIMD capabilities. We thus further optimized the code
using both the Intel SSE and AVX intrinsics, which we will discuss in the next section.

4. SIMD Implementation

4.1 SSE

The Intel SSE instruction set extension allows to perform two double-precision or four single-
precision floating point operations at each clock cycle. It requires the data in such operations to be
vectorized. As discussed in Section 3, we use the multi-dimensional arrays for the fermion vectors.
For the Wilson Dslash in 4D, it goes as

double psi[LT][LZ][LY][LX][4][3][2];

where the real/imaginary index runs the fastest. For double precision, this data structure is already
vectorized in a way suitable for the SSE instruction. While using this vectorization does not require
a complete data structure transformation, the cross term in the complex multiplication requires per-
mutation of the complex vector, which may affect the performance. We used this implementation
for the performance benchmark shown in Section 5, as our final goal is to implement the AVX
instruction for the DWF Dslash operator.

4.2 AVX

The AVX instruction set extension can perform four double-precision or eight single-precision
floating point operations at one clock cycle, provided that the data are vectorized accordingly. A
data structure transformation is required to implement the AVX vectorization. There are various
ways to do this. For the Wilson Dslash, we chose to vectorize using the four spinor degrees of
freedom. The new data layout becomes

double psi[LT][LZ][LY][LX][3][2][4];

For DWF, we tried different data layouts, including one similar to the Wilson Dslash. But the best
performance was obtained when the data layout vectorized along the fifth dimension:

double psi[LT][LZ][LY][LX][3][2][4][LS];

4

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
2
2

Optimizing the domain wall fermion Dirac operator using R-Stream Meifeng Lin

as the 4D DWF Dslash in Eq.(3.3) is inherently data parallel in the fifth dimension. The disadvan-
tage of this data layout is, it requires LS to be multiples of 4 (8) when double (single) precision is
used in the computation. A more flexible data structure is discussed in [7], which we will look into
in the future.

5. Performance

5.1 Compile Environment and Test Platforms

For the performance benchmarks reported in this section, double precision arithmetics were
used. OpenMP was used for threading, while SSE or AVX intrinsics were used for SIMD. In the
tests shown below, we used the GNU C compiler gcc version 5.1.0. Similar results were obtained
with gcc version 4.9.2. We ran the tests on three clusters: (i) The pi0 cluster at Fermilab with
dual-socket Intel “Sandy Bridge" Xeon CPU E5-2650 v2 at 2.60GHz, referred to as SNB-pi0. (ii)
The hpc1 cluster at Brookhaven National Lab with dual-socket Intel “Sandy Bridge" Xeon CPU
E5-2670 at 2.60 GHz, referred to as SNB-hpc1. (iii) The lired cluster at Stony Brook University
with dual-socket Intel “Haswell" Xeon CPU E5-2690 v3 at 2.60 GHz, referred to as HSW-lired.
Both SNB-pi0 and SNB-hpc1 support AVX extension, while HSW-lired supports AVX2.

5.2 Single-Node Wilson Dslash

Figure 1(a) shows the comparison of wall-clock time for the even-odd preconditioned Wilson
Dslash in several implementations on a 164 lattice using the HSW-lired cluster. “CPS serial C"
refers to the noarch implementation in CPS. “CPS C+SSE" refers to the original hand-optimized
version with SSE intrinsics. “RStream+SSE" refers to the R-Stream generated code with SSE in-
trinsics and “RStream+AVX" refers to the version with AVX intrinsics. The best performance was
achieved with 16 threads for the parallelized versions, with the AVX implementation performing
twice as well as the CPS SSE version, at about 22 GFlops per node. While the one-thread perfor-
mance with AVX was quite good, at 4.6 GFlops, the performance suffered from poor scaling of our
OpenMP implementation, which we expect to improve with further investigation.

We also show the performance for the RStream+AVX implementation on three different ma-
chines in Figure 1(b). The performances were quite similar. While the Haswell processors support
fused multiply-add (FMA) that are available in AVX2, at the time of our implementation we did
not have access to this type of CPUs and thus did not include AVX2 instructions. It is not surpris-
ing that our code performs similarly on these three machines. It is also worth noting that the total
number of cores on one node is 16 for the Sandy Bridge clusters and 24 for the Haswell cluster.
When the number of OpenMP threads is equal to the number of cores available, performance drops
slightly, possibly due to the way the threads are scheduled.

5.3 Single-Node 4D DWF Dslash

For DWF, the dominating computation is the 4D DWF Dslash as given in Eq.(3.4). We show
the performance of the 4D DWF Dslash with “RStream+AVX" implementation in Figure 2. The
tests were run on the HSW-lired cluster. Figure 2(a) shows the performance on one node with
different lattice volumes. Since we are interested in scaling up to a large number of nodes, we

5

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
2
2

Optimizing the domain wall fermion Dirac operator using R-Stream Meifeng Lin

 0

 0.01

 0.02

 0.03

 0.04

 0.05

1 2 4 8 12 16 24 32

W
a
ll-

C
lo

c
k
 T

im
e
 [
s
e
c
o
n
d
s
]

Number of OpenMP Threads

Wilson Dslash

CPS serial C
CPS C+SSE

RStream+SSE
RStream+AVX

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

1 2 4 8 12 16 24 32

W
a
ll-

C
lo

c
k
 T

im
e
 [
s
e
c
o
n
d
s
]

Number of OpenMP Threads

Wilson Dslash

SNB-hpc1
SNB-pi0

HSW-lired

(b)

Figure 1: Single-node performance for the Wilson Dslash on a 164 lattice. Figure 1(a) shows the comparison
of wall-clock time for four implementations of the even-odd preconditioned Wilson Dslash on HSW-lired.
Figure 1(b) shows the comparison of wall-clock time for RStream+AVX implementation on three different
machines. Timing is averaged over 10 runs, and the error bars show its variance.

 0

 10

 20

 30

 40

 50

1 2 4 8 12 16 24 32

P
e
rf

o
rm

a
n
c
e
 P

e
r

N
o
d
e
 [
G

F
lo

p
/s

]

Number of OpenMP Threads

4D DWF Dslash

16
3
x16, Ls=16

8
3
x8, Ls=16

8
3
x16, Ls=16

(a)

 0

 2

 4

 6

 8

 10

16
4
x16 8

3
x16x16 8

4
x16

P
e
rf

o
rm

a
n
c
e
 P

e
r

N
o
d
e
 [
G

F
lo

p
/s

]

Lattice Volume (single node)

4D DWF Dslash

scalar

AVX

(b)

Figure 2: Single-node performance for the RStream+AVX implementation of the 4D DWF Dslash on
HSW-lired. Figure 2(a) shows the performance with different OpenMP threads. Figure 1(b) shows the
effect of AVX vectorization on different lattice volumes with one OpenMP thread. Timing is averaged over
10 runs, and the error bars show its variance.

also tested the small node-volumes of 84 and 83× 16. The fifth dimension length Ls was fixed
to 16. The best performance was achieved with the node-volume of 164 and with 16 OpenMP
threads at about 40 GFlops. We also show the effect of vectorization in Figure 2(b), where we
compare the performance of the scalar CPS noarch version with the R-Stream generated code
further vectorized with AVX. As expected, at least a factor of 4 speedup was achieved.

6. Summary and Conclusions

We have presented our experience with using the R-Stream source-to-source, polyhedral-
model-based, compiler to optimize the Dslash operator in CPS for both the Wilson and DWF
fermions. With some modifications to the input sequential C code, we were able to use R-Stream to

6

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
2
2

Optimizing the domain wall fermion Dirac operator using R-Stream Meifeng Lin

analyze and generate C code with loop reorganizations that made it easier for us to parallelize with
OpenMP for the single-node execution. With AVX SIMD instructions, we were able to achieve
more than a factor of 16 speedup on a single node compared to the input serial code for the Wilson
Dslash and more than a factor of 40 for the 4D DWF Dslash . The performance is twice that of
the manually optimized CPS code with SSE intrinsics, suggesting that such high-level code gen-
erators have the potential to give performance on par with hand-written codes. More tests with
different lattice volumes and different compile environments are ongoing. We are also working
on a single-precision version that should offer even greater performance. Multi-node version with
MPI communications is in progress. The performance for the full version with conjugate gradient,
MPI communications and single precision arithmetics will be presented in a future publication.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics under Award Number DE-SC0009678. M.L., T.I. and C.J. are
supported in part by the U.S. Department of Energy, Office of Science under Contract Number DE-
SC0012704 through which Brookhaven National Laboratory is operated. T.I. is also supported by
Grants-in-Aid for Scientific Research #26400261. We gratefully acknowledge the use of computing
resources on the USQCD cluster at Fermilab, HPC Code Center cluster at Brookhaven National
Laboratory and the LI-red cluster at Stony Brook University for testing and benchmarking.

References

[1] http://qcdoc.phys.columbia.edu/cps.html.

[2] B. Meister, N. Vasilache, D. Wohlford, M. M. Baskaran, A. Leung and R. Lethin, R-stream compiler,
in Encyclopedia of Parallel Computing, pp. 1756–1765. 2011.

[3] P. Feautrier, Some efficient solutions to the affine scheduling problem. Part I. One-dimensional time,
International Journal of Parallel Programming 21 (1992), no. 5 313–348.

[4] A. Darte, R. Schreiber and G. Villard, Lattice-based memory allocation, IEEE Trans. Comput. 54
(2005), no. 10 1242–1257.

[5] N. Vasilache, M. M. Baskaran, B. Meister and R. Lethin, Memory reuse optimizations in the r-stream
compiler, in Proceedings of the 6th Annual Workshop on General Purpose Processing with Graphics
Processing Units (GPGPU), Houston, TX, USA, January, 2013.

[6] E. Papenhausen, B. Wang, M. H. Langston, M. Baskaran, T. Henretty, T. Izubuchi, A. Johnson, C. Jung,
M. Lin, B. Meister, K. Mueller and R. Lethin, Polyhedral user mapping and assistant visualizer tool
for the r-stream auto-parallelizing compiler, in Proc. VISSOFT, pp. 180–184, IEEE, 2015.

[7] P. Boyle, G. Cossu, A. Yamaguchi and A. Portelli, Grid: A next generation data parallel c++ qcd
library, PoS LATTICE2015 (2015) 23.

7

