
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
2
9

Optimization of Lattice QCD with CG and multi-shift
CG on Intel Xeon Phi Coprocessor

Hirokazu Kobayashi ∗

Intel K. K.
E-mail: hirokazu.kobayashi@intel.com

Yoshifumi Nakamura
RIKEN AICS
E-mail: nakamura@riken.jp

Shinji Takeda
Kanazawa University
E-mail: takeda@hep.s.kanazawa-u.ac.jp

Yoshinobu Kuramashi
RIKEN AICS
E-mail: kuramasi@riken.jp

We implemented lattice QCD on Intel Xeon Phi coprocessor using intrinsics as vectorization

method, and OpenMP and MPI as parallelization method. Our implementation uses double pre-

cision conjugate gradient (CG) solver which also supports multi-shift CG. We present our opti-

mization methodology and performance for key steps in CG algorithms.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:hirokazu.kobayashi@intel.com
mailto:nakamura@riken.jp
mailto:takeda@hep.s.kanazawa-u.ac.jp
mailto:kuramasi@riken.jp


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
2
9

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi ... Hirokazu Kobayashi

1. Introduction

Recently, microprocessor becomes to have lots of cores and Intel released Xeon PhiTMcoprocessor
which has up to 61 cores. Our motivation is to develop high performance lattice QCD implemen-
tation which runs natively on Xeon Phi. To develop it, efficient implementation of Wilson Clover
fermion operator is necessary. The operator is described below.

D = 1+C−κ
4

∑
µ=1

((1− γµ)U+µ(n)δn,m+µ̂ +(1+ γµ)U−µ(n)δn,m−µ̂) (1.1)

C =
i
2

κcswσµυFµυ(n)δm,n (1.2)

C is called clover term and
4

∑
µ=1

((1−γµ)U+µ(n)δn,m+µ̂ +(1+γµ)U−µ(n)δn,m−µ̂) is called hop-

ping term.

Section2 describes implementation details of our QCD, section3 describes performance eval-
uation of our QCD implementation, and section4 concludes our work.

2. Implementation details

Previous works[1, 2] use code generator, while our work uses direct implementation using
intrinsics. It makes easier to control the generated assembly code, to reduce register allocation or
register spill.

There are some usage models of Xeon Phi. Offloading from host or using native run mode.
we choose native run mode because next generation of Xeon Phi will be released as a self bootable
CPU which will only support native mode.

Our solver uses double precision and Conjugate Gradient(CG) to solve the equation. QCD
kernel is fully written in intrinsics to vectorize the code and it utilizes MPI and OpenMP paral-
lelism. Our implementation supports overlapping of MPI communication and computation to hide
communication latency.

QCD kernel heavily uses memory bandwidth, therefore saving memory bandwidth usage is
a key element of high performance QCD implementation. To save memory bandwidth, several
features are introduced to our implementation. Our implementation supports both normal and
compressed gauge representation. Compressed gauge uses 6 complex values to represent a link
and reconstruct 9 complex values from them on the fly. It can save 33% of gauge access memory
bandwidth at the expense of some floating point operations. Clover term computation in CG solver
is fused with hopping term computation. This reduces quark field data access. Hopping term
computation can run without clover term computation for benchmark purpose. Streaming stores
are used to reduce cache footprint. It makes writing data go directly to memory without polluting
cache. Our implementation uses software prefetch to hide memory latency. BLAS like linear
algebra in CG is fused as much as possible to reduce memory access.

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
2
9

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi ... Hirokazu Kobayashi

2.1 Data layout

Utilizing Xeon Phi vector register is one of the key element of high performance implemen-
tation of QCD. Xeon Phi supports gather and scatter operation in its instruction set[3], but these
instructions latency and throughput are not as good as load or store instructions. Therefore proper
data layout which avoid using gather and scatter instructions should be used.

Our implementation uses Array of Structure of Array(AOSOA) Layout along X direction.
Vector length of Xeon Phi is 512bit, therefore it can contain 8 double precision floating point
numbers in a vector register. Storage of quark fields isdouble SC[3][4][2][8] where last 8
contains X direction data sequentially. Even-odd precondition is used in this CG solver, therefore
X direction lattice size should be multiple of 16. Thus load and store instructions are used to move
data between memory and register. No size constraints for other direction. Our implementation
doesn’t allow to cut X direction among MPI processes to avoid complex data rearrangement.

Gauge fields storage is rearranged to enable linear memory access pattern. Both forward
and backward links are stored at each site. This increases memory locality and effectiveness of
prefetching gauge data. As a side effect, double storage size is required for gauge field data.

2.2 OpenMP and MPI implementation of hopping term

Xeon Phi has up to 61 cores and thread synchronization on Xeon Phi is relatively slow com-
pared to other CPUs, therefor reducing thread synchronization is one of the key element to get high
performance implementation on Xeon Phi. Our implementation overlaps MPI communication and
processing of internal(non-boundary) part of hopping term while reducing thread synchronization.
Figure1 illustrates this mechanism.

When hopping term processing starts, all threads start to process the boundary parts first to
prepare the transmit data. After processing boundary parts, all threads are synchronized to ensure
all the transmit data preparation is finished. Then master thread starts MPI communication and
all the other threads start processing internal parts concurrently. After MPI communication and
internal processing are done, all threads are synchronized. Because All data is received at this time
and internal processing is finished, all threads are used to process the boundary data. After finishing
to process the boundary data, all threads are synchronized, to ensure all hopping term processing
is finished. Thus our implementation uses three synchronizations in one iteration of hopping term.

If only one thread is used to preprocess the boundary data and MPI communication is ini-
tiated on the thread, synchronization after boundary data preprocessing could be skipped. This
method is tested on our implementation and the performance is not good because the boundary
data preprocessing takes longer time. Therefore our implementation doesn’t use this method.

3. Performance evaluation

Table1 describes hardware and software configuration for performance evaluation. Each node
has one Xeon Phi coprocessor card. Xeon Phi card and Infiniband network card are attached to
the same CPU socket’s PCIe slots. If Xeon Phi and Infiniband network card use different socket’s
PCIe slots, the multi card performance would be worse because of network latency increase.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
2
9

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi ... Hirokazu Kobayashi

Figure 1: This figure describes one iteration of hopping term processing

Element Configuration

Host Xeon E5-2697 v3(Haswell) 2.6GHz 14core* 2sockets
Coprocessor Xeon Phi 7120A(1.238Ghz, 61core)
HCA Mellanox FDB IB
MPSS Version 3.3.3
Compiler Intel Compiler 15.0.2
MPI Intel MPI 5.0.3

Table 1: Hardware and software configuration for performance evaluation

3.1 Hopping term performance on 1 card

In this section, we evaluate some key optimization features that affect performance on hopping
term. Hopping term is fused with clover term computation in CG, but performances in this section
addresses only hopping term computation which doesn’t include clover term computation.

Table2 shows hopping term performance with gauge compression and without gauge com-
pression which means normal gauge. Hopping term performance depends on lattice size. Small
lattice size performance cannot get peak performance, because the thread synchronization overhead
and thread load imbalance have significant impact on performance. To get peak performance on one
card, lattice size larger than 32x32x32x24 is required in this implementation. Gauge compression
saves memory traffic, its effect on hopping term performance is about 13-14%.

Table3 shows hopping term performance with software prefetch instructions and without soft-

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
2
9

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi ... Hirokazu Kobayashi

Lattice size normal gauge compressed gauge

32x32x32x12 79 GFLOPS (0.87) 86 GFLOPS (1.00)
32x32x32x24 85 GFLOPS (0.86) 94 GFLOPS (1.00)
32x32x32x32 88 GFLOPS (0.86) 93 GFLOPS (1.00)

Table 2: Comparison of hopping term performance between normal gauge and compressed gauge on 1 Xeon
Phi

Lattice size without prefetch with prefetch

32x32x32x12 63 GFLOPS (0.87) 86 GFLOPS (1.00)
32x32x32x24 69 GFLOPS (0.86) 94 GFLOPS (1.00)
32x32x32x32 69 GFLOPS (0.86) 93 GFLOPS (1.00)

Table 3: Evaluation of software prefetch effect on hopping term with gauge compression on 1 Xeon Phi

Lattice size without streaming store with streaming store

32x32x32x12 79 GFLOPS (0.91) 86 GFLOPS (1.00)
32x32x32x24 85 GFLOPS (0.91) 94 GFLOPS (1.00)
32x32x32x32 85 GFLOPS (0.91) 93 GFLOPS (1.00)

Table 4: Evaluation of streaming store effect on hopping term with gauge compression on 1 Xeon Phi

Lattice size normal gauge compressed gauge

32x32x32x12 68 GFLOPS (0.91) 75 GFLOPS (1.00)
32x32x32x24 75 GFLOPS (0.90) 83 GFLOPS (1.00)
32x32x32x32 77 GFLOPS (0.93) 83 GFLOPS (1.00)

Table 5: CG Performance of both normal gauge and compressed gauge on 1 Xeon Phi

ware prefetch instructions. All other conditions except software prefetch is the same, therefore we
can evaluate software prefetch effect on hopping term performance. Software prefetch effect on
hopping term performance is about 13-14%.

Table4 shows hopping term performance with streaming stores and without streaming store
instructions. Streaming store effect on hopping term is about 9%.

3.2 CG performance on 1 card

Table5 shows CG performance with compressed gauge and without compressed gauge. Com-
pressed gauge field saves memory traffic only in hopping term, therefore its effect on CG perfor-
mance is 9% and less than hopping term.

3.3 Multi card performance

Figure2 shows multi-card performance of hopping term of several lattice sizes. To achieve
peak performance on one card, lattice size larger than 32x32x32x24 is required. Multi card run

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
2
9

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi ... Hirokazu Kobayashi

Figure 2: This figure describes hopping term performance with compressed gauge using multi-nodes

needs more larger lattice size to achieve good scalability. To achieve good scalability up to 16
cards, lattice size larger than 32x32x32x128 is required. Smaller lattice size limits the multi card
scalability. For example, lattice size 32x32x32x24 can achieve 93 GFLOPS on one card, but it can
only achieve 236 GFLOPS using 8 cards which is 2.5x of 1 card performance. There is two reasons
for worse scalability of relatively smaller lattice size.

1. MPI communication bandwidth is better with large MPI message size. Small lattice size uses
small MPI message size and it cannot use network bandwidth effectively.

2. Internal part processing time of small lattice size is shorter than MPI communication time.
Therefor it cannot hide MPI communication latency.

Figure3 shows multi-card performance of CG of several lattice sizes. Small lattice size scal-
ability is still worse as same as hopping term. For example 32x32x32x24 CG performance on 1
card is 83 GFLOPS and the performance of 8 cards is 271 GFLOPS which is 3.2x of one card per-
formance. Its scalability is better than hopping term because linear algebra and clover term need
less communication bandwidth compared to hopping term, and thus their scalability is better than
hopping term.

Figure4 shows multi card performance of multi-shift CG. This graph shows nshift=10 which
means 10 equation are solved simultaneously. Multishift CG scales in small lattice size because
the linear algebra weights is bigger than normal CG.

4. Conclusion

One card performance of our implementation can achieve the peak of 94 GFLOPS for hopping
term and 83 GFLOPS for CG lattice size larger than 32x32x32x24. Our implementation scales up
to 16 Xeon Phi cards for 32x32x32x128 lattice size. And scalability depends on lattice size because
effective network bandwidth for small data size is not good as large data size. SW prefetching,
streaming stores and compressed gauge data is a key element to increase performance.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
2
9

Optimization of Lattice QCD with CG and multi-shift CG on Intel Xeon Phi ... Hirokazu Kobayashi

Figure 3: This figure describes CG performance using multi-nodes

Figure 4: This figure describes Multishift-CG performance(nshift=10) using multi-nodes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 25871116.

References

[1] B. Joó, D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany, V. Lee, P. Dubey, and
W. Watson,Lattice QCD on IntelR⃝ Xeon PhiTMCoprocessors, in Supercomputing, vol. 7905 ofLecture
Notes in Computer Science, pp. 40–54. Springer Berlin Heidelberg, 2013.

[2] R. Li and S. Gottlieb,Staggered Dslash Performance on Intel Xeon Phi Architecture, in Proceedings of
32nd International Symposium on Lattice Field Theory,PoS(LATTICE2014)034 .

[3] Intel, Intel R⃝ Xeon PhiTMCoprocessor Instruction Set Architecture Reference Manual.

7

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2014)034

