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We present our recent effort to develop a GPGPU program tolledé 52 channels of the Nambu-
Bethe-Salpeter (NBS) wave functions in order to study theydrainteractions, from nucleon-
nucleon to= — =, from lattice QCD. We adopt CUDA programming to perform theltrGPU
execution on a hybrid parallel programming with MP1 and OyénEffective baryon block al-
gorithm is briefly outlined, which calculates efficacioualjarge number of NBS wave functions
at the same time, and three CUDA kernel programs are impleddéa materialize the effective
baryon block algorithm using GPUs on the single-prograntipietdata (SPMD) programming
model. In order to parallelize multiple GPUs, we take botb tapproaches by dividing the time
dimension and by dividing the spatial dimensions. Perforrea are measured using HA-PACS
supercomputer in University of Tsukuba, which includes BA M2090 and NVIDIA K20X
GPUs. Strong scaling and weak scaling measured by using\d@@90 and K20X GPUs are
presented. We find distinct difference between the M2090tla@dK20X in the sustained perfor-
mance measurement of particular kernel executions whiltheuthe cudaStream objects.
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1. Introduction

Thanks to both elevating computer performance and various inventionsnoériual algo-
rithms, the lattice QCD approach to nuclear physics is being developed a& jrifiiciple calcu-
lation. Not only two-body systems [1, 2, 3, 4] but also nuclear few-beytems [5, 6] are the
playground for the present-day lattice QCD simulations. In addition, a n@noaph to theNN
interaction from the lattice QCD has been proposed[7, 8]. In this appydhae nucleon-nucleon
(NN) potential can be obtained from the lattice QCD by measuring the Nambu-Betpeter
(NBS) wave function and the observables such as the phase shiftsabthtting energies are
calculated through the resultant potential[9]. This approach has beaerfextended and applied
to various hadronic systems. See Ref. [10] and references ther¢irefstate-of-the-art outcomes.
Furthermore, a large scale lattice QCD calculation is now in progress [11lidy she baryon
interactions fromNN to == by measuring the NBS wave functions for 52 channels.

The purpose of this paper is to present our recent effort to devethybred parallel GPGPU
program for multiple devices to perform the calculation of the baryon intieres: This report
is organized as follows: Section 2 briefly outlines the effective block #lguarto calculate the
NBS wave functions. Section 3 shows the machine and programming scaftused in this work.
Section 4 is devoted to present the hybrid parallel program for multi-GRtdilesion. In Sec. 5
we show the performances of the calculation with GPUs for the 52 chanhéie &NBS wave
functions. Sec. 6 summarizes the report.

2. Formulation

In order to study the baryon interactions, the primary quantity we compute wiitel@CD
is the four-point correlation function defined by

é?éiziﬁ@ (rvt - tO) = z <0 ‘ Bl,orl (X + ?)t)BZﬂz (Xut) st.agBAm; (tO) ‘ O> ’ (2.1)
X

where the summation ovét selects states with zero total momentum. Bag, (x) andBy g, (Y)
denote the interpolating fields of the baryons such as

P = Eapc (UaCys0h) Uc, N= —&upc (UCysdp)de, A= % (Xu+Xg — 2Xs),
T = —Eabc (UCYs) Ue,  Z0= 15 (Xu—Xa), 37 = —Eac (daClssp) e, (2.2)
=0 = ganc (ULCY5%) &, =7 = —&anc (daC¥)
where
Xu= Eapc (AaC¥sSp) Ue,  Xd = anc (SaC¥sUp) de,  Xs = Eanc (UaCYs0h) S (2.3)

For simplicity, we have suppressed the explicit spinor indices and spatiadinates in Egs. (2.2)
and (2.3); 78, 4,84, (fo) is & source operator which credgq,Ba q, states at =to. Hereafter,
explicit time dependences are suppressed. In order to quantify th@dmircorrelation function

é?&i@%> (7), we first consider the Wick’s contraction together with defining the babjooks
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with
0
[BLa] (% & ER) = (Bray (%) o, 3(8h)Gp, o(&,)Ts, 1(8R) ), and
0
BE2,1(5: &y EhsEh) = (Boan(Y) T, 6800, 5(ER) Ty a &5, )
whereogp and{é&p ,---, &g, } are the sign factor and the set of permutated color-spin-space coordi-
nates for each permutatidh respectively. Both 3-tuple sets of the quark fie{d§, ;,0g, », 0, 3}

and {G’BZ 4,6’82 5,6’82 ¢t are ordered properly so as to correspond toBheand B, states. Tak-

ing the expression in Eq. (2.4), the number of the iterations to obtﬁﬁﬁﬂiﬁ“ reduces to

(Ng!Ng )B x Ny!Ng!Ng! x 2N +N:0=B "whereN, = 3,Ny = 4 andNa, Nso, Ny, Ng, Ns andB are the
numbers of\, 3%, up-quark, down-quark, strange-quark and the baryons (i.eayaB/= 2 in the
present study), respectively. In Ref. [12], only the limited spatial poirgee evaluated because
of the computational co€d(L%) in the primitive numerical approach. After that we employed the
Fast-Fourier-Transform (FFT) and the effective baryon blocks tadrgthe numerical perfor-
mance taO(L3logL?) [13];

- (B187B3B4) 2 1 (P (P id.
Pt s (7) Z“PZ( () (B, (X) Jasai ng( op([Bi;J<q>x[B§,;21<—q>)a3a;éd?
qd
(2.6)
See Ref. [14] how to extract the effective baryon blocks. For exantipgespecific form of the

four-point correlation functiorﬁé%\%@(?) of the (pApX,) channel is given by,

(2.5)

i (1) =15 > ([Pas () At ) () — [P s (D Ay (0

- [ﬁai)ag]%aQQGg (@) [/N\Exz)a4]c’za§cgag (~d) +[Pya, ¢ ajesaz (0) i) ¢ ajeear(—0)
+ Pl arcy (DA o arey (—8) —[Phosa)ee.ar (0) A }dgdsag(—q)) eI (2.7)

By employing the effective block algorithm, the number of iterations to evaluae.ths. of
Eqg. (2.7) except the momentum space degrees of freedom becombig 4 N2N2 + N2N2 +
N2Ng + N2N, = 370, which is significantly smaller than the numket!Ng)B x Ny!Ng!Ng! x

2N +Ns0—B — 3456 seen in Eqg. (2.4). The manipulation on the expression of Eq. (2.6is tf

the effective blockégBl’al] and [B(Z;Z} can be automatically done once the set of the interpolating
fields (i.e., the quantum numbers) of both sink and source parts is gikgn [1

3. Machine and programming softwares

The present implementation is performed to utilize HA-PACS supercomputerivetsity of
Tsukuba, which includes base cluster part and tightly coupled accete(@©A) part. The base
cluster part consists of 268 nodes, each of which comprises two IH26F8 CPUs as well as four
NVIDIA M2090 GPUs connected by PCl-express, and started for comuse in 2012. The TCA
part involving 64 nodes was added to the HA-PACS in 2013, each of wdantprises two Intel
E5-2680v2 CPUs and four NVIDIA K20X GPUS.Table 1 summarizes properties of these GPUs.
For programming softwares on HA-PACS in this report we employed Intel Cempiler Version

1The TCA system is developed to implement a proprietary interconneetiedly for accelerators, in order to
shorten the communication latency among accelerators over diffesdas[15].
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Base cluster part TCA part
Name Tesla M2090 Tesla K20Xm
Peak performance (GFlops, DP) 665 1310
Compute capability 2.0 35
Global memory (GiB) 5.25 5.62
ECC Enabled Enabled
Clock rate (GHz) 1.30 0.732
Memory bus width (bit) 384 384
Memory clock rate (GHz) 1.85 2.60
Constant memory (KiB) 64 64
Shared memory per block (KiB) 48 48
32-bit registers available per block 32768 65536
Threads in warp 32 32

Table 1: Several outputs fromudaDeviceProp and the peak performance values of double precision (DP)
in GFlops obtained from HA-PACS.

14.0.4.211, Intel MPI Library 4.1 for Linux, and NVIDIA Cuda compileineir version 6.5.14.

4. Implementation of hybrid parallel CUDA code for multiple GPUs system

In Ref. [14], we developed a hybrid parallel C++ program to calculatesthchannels of the
four-point correlation functions by using both MPI and OpenMP. Thegm@m works on either
Bridge++ or CPS++, where both modified versions are employed. For&ricdeasibility of two
frameworks, OpenCL and OpenACC, to utilize the GPU is discussed [a@his work, we adopt
NVIDIA's CUDA programming for the first testbed implementation, becausedrget machine is
HA-PACS comprising NVIDIA's Fermi and Kepler generation GPUs so éhattter performance is
expected with developing the CUDA programming than others. We also, in this aim to mate-
rialize the multi-GPU execution on the hybrid parallel programming with MP| aneln® by the
single-program multiple-data (SPMD) programming model. In order to utilize mulBplgs from
a single program, we assign one MPI process to each GPU. Basic arithineétialde-precision
complex-numbers is implemented by hand with utilizing shared memory. Constantrynisrem-
ployed to store runtime parameters and constant parameters. In the follavérgdgscribe three
CUDA kernels implemented to calculate the 52 channels of the NBS wave fusiction
(i) NormalBaryonBlocks : Assuming that the quark propagators are already solved, we first
compute the normal baryon blocks on GPUs:

BE)(F: &1,85,85) = (Ba(") B(L)BEM(E)), with B=pI" =X XX,  (4.1)

where three quark flavorg;, o, g; are appropriately chosen to create the corresporBliatate.
The other baryon block& = n, >, =, 3% A, are obtained from the above according to Egs. (2.2)
and (2.3) with presuming the symmetricity under the interchange of up and doanmks in the
isospin symmetric limit. After the kernel execution, the FFT is employed to obtainahgmb
blocks in momentum space. No clear benefit nor clear disadvantage isv@tge performing the
FFT whether on host side or on device side; the bottleneck is due #ltball MPI communica-
tions for the FFT. The data of normal baryon blocks are replaced by its mentum space after
the FFT.
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(i) Ef fectiveBaryonBlocks: We construct the effective baryon blocks from the normal baryon
blocks in momentum space,

{[Bfél]gd(dx[Bé?éngd<—d);a3,a4}, with  B=p,Z" =0 X Xa X (42)

Where{sd} denotes the indices which originate from the quark fields in the sourcextomple,

in Eq- (2-7)’ it become$n0n@’ {(:/37(:,6}’ {C,vaévcibazll}’ {C/lvaivd&aé}' {dbai?dG}’ {0'3,(3’5,(1(5}

for the six terms of the four-point correlator of the chanfi@\pX,). In order to avoid the warp
divergence, the diagramatical classification is performed throughouei@BU code and the re-
sultant data is aligned in Structure of Arrays (SoA) format which is trairedfito the device prior

to the kernel execution. This kernel execution has less timing performanatirtipugh it is
indispensable to connect the former part and the next part. There&have not paid very much
attention to improve the performance of this kernel.

(iii) MultiplicationE f f ectiveBlocks : Performed the kernel executions described in the above,
we make the product of two effective baryon blocks on GPUSs,

(Bhl@xERi-a) =5 (BhE @B D) . @3
a304 ] a0y

For entire 52 channels of the NBS wave functions, we have to considsrsalth summations tab-
ulated in Tables 1-4 in Ref. [14]. This is one of the time consuming part ofriésept calculation.
The symbolical manipulations are performed in the CPU code and the ressitArformed data
is transferred to GPU to suppress the warp divergence prior to thellemcution. To have good
overlapping the kernel executions and the data transfer between trenidagevice, especially for
the K20X GPU, we also utilize theudaStream objects. The NBS wave function is finally obtained
by performing the inverse FFT.

5. Results

Table 2 shows the performance values of double-precision computatidflap§using single
GPU for each single kernel executionNdr mal BaryonBlocks, EffectiveBaryonBlocks or Multipli-
cationEffectiveBlocks with L3 x T = 16° x 32 lattice measured on the base cluster part (M2090)
or the TCA part (K20X). We also list the sustained GFlops values handleddaStream for the
kernel executions dilormal BaryonBlocks and MultiplicationEffectiveBlocks in parentheses. The

Kernel Tesla M2090 Tesla K20Xm
Normal BaryonBlocks 98 (98) 94 (95)
EffectiveBaryonBlocks 3.1 0.55
MultiplicationEffectiveBlocks 8.2 (8.0) 3.2(27)

Table 2: The performance values in GFlops using single GPU for eadieskernel execution dflormal-
BaryonBlocks, EffectiveBaryonBlocks or MultiplicationEffectiveBlocks, measured on the base cluster part
(M2090) or on the TCA part (K20X). The calculation is perfadin an accuracy of double precision with
the lattice sizé.3 x T = 16° x 32. In parentheses the sustained performance values damdtzidaStream
are shown for the kernel executionsidr mal BaryonBlocks andMultiplicationEffectiveBlocks in GFlops.



An implementation of hybrid parallel CUDA code for the hyperonic nuclear forces Hidekatsu Nemura
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Figure1: Strong scaling of the CUDA kernel execuFigure 2: Weak scaling of the CUDA kernel execu-
tions with the lattice siz&® x T = 163 x 32. tions with the lattice size® x T = 16° x 32 per GPU.

handling of kernel executions faviultiplicationEffectiveBlocks by cudaStream lifts up the per-
formance for the K20X more than factor 8 whereas no improvement is\aaséor the M2090.
This is because the different architecture between the M2090 and the; Kt&® compute capa-
bility of M2090 (K20X) is 2.0 (3.5). Figure 1 shows the strong scalings of kemel execu-
tions Normal BaryonBlocks (NBB) andMultiplicationEffectiveBlocks (MEB) with total lattice size
L3 x T = 16% x 32 measured on the base cluster part (M2090) and the TCA part (K20)ar-
allelizing across multiple GPUs, we take both two approaches by dividing the timendion and
by dividing the spatial dimensions, which are indicated by “T-parallel” dngdrallel” in the fig-
ure. Detailed parameters which specifies the load on each GPU are adjngach measurement.
Figure 2 shows the weak scalings of two kernel executidorsnal BaryonBlocks (NBB) andMul-
tiplicationEffectiveBlocks (MEB) for (an-)isotropic lattice with siz&3 x T = 16° x 32 per GPU
measured on the base cluster part (M2090) and the TCA part (K20X).

6. Summary

In this paper, we present a recent effort to develop the hybrid pa@R&PU program for
multiple devices that calculates the 52 channels of the NBS wave functioesinifflementation
and the performance measurements are performed by using HA-PAE€Ssmputer in University
of Tsukuba, which comprises the base cluster part including NVIDIA 828nd the TCA part
including NVIDIA K20X. In order to have better performance by using@tUs, we adopt CUDA
programming for the first testbed implementation. In performing the FFT, noloégeefit nor clear
disadvantage is observed whether by using CPUs or by using GPUse kérnel programs are
implemented by considering the data ordering on the device memory, suppre$the warp
divergence, and making use of the shared memory and the constant meWwlerglso employ
the cudaStream to perform efficiently the kernel executions as well atatheransfers between
the host and device because the data transfers are indispensabke [Eogéhscale calculation of
52 channels of the NBS wave functions. The strong scaling and the wealikgsare measured
for the kernel executions. Distinct difference between the M2090 amdK#0X is observed in
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the sustained performance measurement of the particular kernel exscuiendling of kernel
executions by using cudaStream is a key to make better use of latest GPigsapgfoach.

Acknowledgments

The author would like to thank CP-PACS/JLQCD collaborations and ILDG@ELD7] for
allowing us to access the full QCD gauge configurations, and develop@&sdge++ [18], and
the Computational Materials Science Initiative (CMSI). Calculations in thisiplagee been per-
formed by using the HA-PACS computer under the Interdisciplinary Computdtcience Pro-
gram in CCS, University of Tsukuba. This research was supportearirbp Strategic Program for
Innovative Research (SPIRE), the MEXT Grant-in-Aid, Scientific Res® on Innovative Areas
(No. 25105505).

References

[1] M. Fukugita, Y. Kuramashi, M. Okawa, H. Mino and A. Ukawhys. Rev. (52, 3003 (1995).
[2] S. R. Beane, P. F. Bedaque, K. Orginos and M. J. Savags, Rey. Lett97, 012001 (2006).
[3] S. Muroya, A. Nakamura and J. Nagata, Nucl. Phys. ProppE5#29, 239 (2004).
[4] S.R.Beanet al. [NPLQCD Collab.], Nucl. Phys. A94, 62 (2007).
[5] T. Yamazakiet al. [PACS-CS Collaboration], Phys. Rev.&, 111504 (2010).
[6] S. R.Beanet al. [NPLQCD Collaboration], Phys. Rev. B7, no. 3, 034506 (2013).
[7] N.lIshii, S. Aoki, T. Hatsuda, Phys. Rev. Le®9, 022001 (2007).
[8] S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Ph§23 (2010) 89.
[9] S. Aoki et al. [HAL QCD Collaboration], PTER012, 01A105 (2012).
[10] K. Sasakiet al. [HAL QCD Collaboration], PTER2015, no. 11, 113B01 (2015).

[11] T. Doietal., arXiv:1512.01610 [hep-lat]; N. Ishét al., in these proceedings; K. Sasakal., in these
proceedings;

[12] H.Nemura, N.Ishii, S.Aoki and T.Hatsuda, Phys. Let6%, 136 (2009).

[13] H. Nemura, N. Ishii, S. Aoki and T. Hatsuda [PACS-CS @bbration], Po$ ATTICE2008, 156
(2008).

[14] H. Nemura, arXiv:1510.00903 [hep-lat].

[15] T. Hanawa, Y. Kodama, T. Boku and M. Sato, IPDPSW 13 leestings of the 2013 IEEE 27th
International Symposium on Parallel and Distributed Pssirey Workshops and PhD Forum, 1030
(2013).

[16] S. Motoki,et al., in these proceedings.
[17] Seehtt p://www. | gcd. org/il dgandhttp://ww.jl dg. org
[18] Lattice QCD code Bridge++#tt p: // bri dge. kek. j p/ Latti ce-code/index_e. htni .



