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We present our recent effort to develop a GPGPU program to calculate 52 channels of the Nambu-

Bethe-Salpeter (NBS) wave functions in order to study the baryon interactions, from nucleon-

nucleon toΞ−Ξ, from lattice QCD. We adopt CUDA programming to perform the multi-GPU

execution on a hybrid parallel programming with MPI and OpenMP. Effective baryon block al-

gorithm is briefly outlined, which calculates efficaciouslya large number of NBS wave functions

at the same time, and three CUDA kernel programs are implemented to materialize the effective

baryon block algorithm using GPUs on the single-program multiple-data (SPMD) programming

model. In order to parallelize multiple GPUs, we take both two approaches by dividing the time

dimension and by dividing the spatial dimensions. Performances are measured using HA-PACS

supercomputer in University of Tsukuba, which includes NVIDIA M2090 and NVIDIA K20X

GPUs. Strong scaling and weak scaling measured by using bothM2090 and K20X GPUs are

presented. We find distinct difference between the M2090 andthe K20X in the sustained perfor-

mance measurement of particular kernel executions which utilize the cudaStream objects.
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1. Introduction

Thanks to both elevating computer performance and various inventions of numerical algo-
rithms, the lattice QCD approach to nuclear physics is being developed as a first-principle calcu-
lation. Not only two-body systems [1, 2, 3, 4] but also nuclear few-bodysystems [5, 6] are the
playground for the present-day lattice QCD simulations. In addition, a new approach to theNN
interaction from the lattice QCD has been proposed[7, 8]. In this approach, the nucleon-nucleon
(NN) potential can be obtained from the lattice QCD by measuring the Nambu-Bethe-Salpeter
(NBS) wave function and the observables such as the phase shifts and the binding energies are
calculated through the resultant potential[9]. This approach has been further extended and applied
to various hadronic systems. See Ref. [10] and references therein for the state-of-the-art outcomes.
Furthermore, a large scale lattice QCD calculation is now in progress [11] to study the baryon
interactions fromNN to ΞΞ by measuring the NBS wave functions for 52 channels.

The purpose of this paper is to present our recent effort to develop ahybrid parallel GPGPU
program for multiple devices to perform the calculation of the baryon interactions. This report
is organized as follows: Section 2 briefly outlines the effective block algorithm to calculate the
NBS wave functions. Section 3 shows the machine and programming softwares used in this work.
Section 4 is devoted to present the hybrid parallel program for multi-GPU calculation. In Sec. 5
we show the performances of the calculation with GPUs for the 52 channels of the NBS wave
functions. Sec. 6 summarizes the report.

2. Formulation

In order to study the baryon interactions, the primary quantity we compute with lattice QCD
is the four-point correlation function defined by

F〈B1B2B3B4〉
α1α2,α3α4 (~r, t − t0) = ∑

~X

〈
0
∣∣∣B1,α1(~X +~r, t)B2,α2(~X , t)JB3,α3B4,α4

(t0)
∣∣∣0

〉
, (2.1)

where the summation over~X selects states with zero total momentum. TheB1,α1(x) andB2,α2(y)
denote the interpolating fields of the baryons such as

p = εabc (uaCγ5db)uc, n = −εabc (uaCγ5db)dc, Λ = 1√
6
(Xu +Xd −2Xs) ,

Σ+ = −εabc (uaCγ5sb)uc, Σ0 = 1√
2
(Xu −Xd) , Σ− = −εabc (daCγ5sb)dc,

Ξ0 = εabc (uaCγ5sb)sc, Ξ− = −εabc (daCγ5sb)sc,

(2.2)

where
Xu = εabc (daCγ5sb)uc, Xd = εabc (saCγ5ub)dc, Xs = εabc (uaCγ5db)sc. (2.3)

For simplicity, we have suppressed the explicit spinor indices and spatial coordinates in Eqs. (2.2)
and (2.3);JB3,α3B4,α4

(t0) is a source operator which createB3,α3B4,α4 states att = t0. Hereafter,
explicit time dependences are suppressed. In order to quantify the four-point correlation function
F〈B1B2B3B4〉

α1α2,α3α4 (~r), we first consider the Wick’s contraction together with defining the baryonblocks

[B(0)
1,α1

](~x;ξ ′
P1

,ξ ′
P2

,ξ ′
P3

) and[B(0)
2,α2

](~y;ξ ′
P4

,ξ ′
P5

,ξ ′
P6

),

F〈B1B2B3B4〉
α1α2,α3α4 (~r) = ∑~X ∑P σP [B(0)

1,α1
](~X +~r; ξ ′

P1
,ξ ′

P2
,ξ ′

P3
) [B(0)

2,α2
](~X ; ξ ′

P4
,ξ ′

P5
,ξ ′

P6
)

×εc′1c′2c′3
εc′4c′5c′6

(Cγ5)α ′
1α ′

2
(Cγ5)α ′

4α ′
5
δα ′

3α3
δα ′

6α4
,

(2.4)
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with
[B(0)

1,α1
](~x; ξ ′

P1
,ξ ′

P2
,ξ ′

P3
) =

〈
B1,α1(~x) q̄′B1,3(ξ

′
P3

)q̄′B1,2(ξ
′
P2

)q̄′B1,1(ξ
′
P1

)
〉

, and

[B(0)
2,α2

](~y; ξ ′
P4

,ξ ′
P5

,ξ ′
P6

) =
〈

B2,α2(~y) q̄′B2,6
(ξ ′

P6
)q̄′B2,5

(ξ ′
P5

)q̄′B2,4(ξ
′
P4

)
〉

,
(2.5)

whereσP and{ξ ′
P1

, · · · ,ξ ′
P6
} are the sign factor and the set of permutated color-spin-space coordi-

nates for each permutationP, respectively. Both 3-tuple sets of the quark fields{q̄′B1,1, q̄
′
B1,2, q̄

′
B1,3}

and {q̄′B2,4, q̄
′
B2,5

, q̄′B2,6
} are ordered properly so as to correspond to theB1 and B2 states. Tak-

ing the expression in Eq. (2.4), the number of the iterations to obtain aF〈B1B2B3B4〉
α1α2,α3α4 (~r) reduces to

(Nc!Nα)B ×Nu!Nd !Ns! ×2NΛ+NΣ0−B, whereNc = 3,Nα = 4 andNΛ, NΣ0, Nu,Nd,Ns andB are the
numbers ofΛ,Σ0, up-quark, down-quark, strange-quark and the baryons (i.e., alwaysB = 2 in the
present study), respectively. In Ref. [12], only the limited spatial pointswere evaluated because
of the computational costO(L6) in the primitive numerical approach. After that we employed the
Fast-Fourier-Transform (FFT) and the effective baryon blocks to improve the numerical perfor-
mance toO(L3 logL3) [13];

F〈B1B2B3B4〉
α1α2,α3α4 (~r)=∑

P

σP∑
~X

(
[B(P)

1,α1
](~X+~r)×[B(P)

2,α2
](~X)

)
α3α4=

1
L3∑

~q

(

∑
P

σP

(
[
˜
B(P)

1,α1
](~q)×[

˜
B(P)

2,α2
](−~q)

)
α3α4

)
ei~q·~r.

(2.6)
See Ref. [14] how to extract the effective baryon blocks. For example, the specific form of the
four-point correlation functionF〈pΛpXu〉

α1α2,α3α4(~r) of the〈pΛpXu〉 channel is given by,

F〈pΛpXu〉
α1α2,α3α4(~r)=

1
L3 ∑

~q

(
[ p̃(1)

α1α3](~q)[Λ̃(1)
α2α4](−~q)− [ p̃(2)

α1α4]c′3c′6
(~q)[Λ̃(2)

α2α3]c′3c′6
(−~q)

−[ p̃(3)
α1α3]c′2α ′

2c′4α ′
4
(~q)[Λ̃(3)

α2α4]c′2α ′
2c′4α ′

4
(−~q) +[p̃(4)

α1α4]c′1α ′
1c′5α ′

5
(~q)[Λ̃(4)

α2α3]c′1α ′
1c′5α ′

5
(−~q)

+[p̃(5)
α1α3α4]c′1α ′

1c′6
(~q)[Λ̃(5)

α2 ]c′1α ′
1c′6

(−~q) −[ p̃(6)
α1α3α4]c′3c′5α ′

5
(~q)[Λ̃(6)

α2 ]c′3c′5α ′
5
(−~q)

)
ei~q·~r.(2.7)

By employing the effective block algorithm, the number of iterations to evaluate the r.h.s. of
Eq. (2.7) except the momentum space degrees of freedom becomes 1+ N2

c + N2
c N2

α + N2
c N2

α +

N2
c Nα + N2

c Nα = 370, which is significantly smaller than the number(Nc!Nα)B × Nu!Nd !Ns! ×
2NΛ+NΣ0−B = 3456 seen in Eq. (2.4). The manipulation on the expression of Eq. (2.6) in terms of
the effective blocks[B(P)

1,α1
] and[B(P)

2,α2
] can be automatically done once the set of the interpolating

fields (i.e., the quantum numbers) of both sink and source parts is given [14].

3. Machine and programming softwares

The present implementation is performed to utilize HA-PACS supercomputer in University of
Tsukuba, which includes base cluster part and tightly coupled accelerators (TCA) part. The base
cluster part consists of 268 nodes, each of which comprises two Intel E5-2670 CPUs as well as four
NVIDIA M2090 GPUs connected by PCI-express, and started for common use in 2012. The TCA
part involving 64 nodes was added to the HA-PACS in 2013, each of whichcomprises two Intel
E5-2680v2 CPUs and four NVIDIA K20X GPUs.1 Table 1 summarizes properties of these GPUs.
For programming softwares on HA-PACS in this report we employed Intel C++ Compiler Version

1The TCA system is developed to implement a proprietary interconnect especially for accelerators, in order to
shorten the communication latency among accelerators over different nodes[15].
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Base cluster part TCA part
Name Tesla M2090 Tesla K20Xm
Peak performance (GFlops, DP) 665 1310
Compute capability 2.0 3.5
Global memory (GiB) 5.25 5.62
ECC Enabled Enabled
Clock rate (GHz) 1.30 0.732
Memory bus width (bit) 384 384
Memory clock rate (GHz) 1.85 2.60
Constant memory (KiB) 64 64
Shared memory per block (KiB) 48 48
32-bit registers available per block 32768 65536
Threads in warp 32 32

Table 1: Several outputs fromcudaDeviceProp and the peak performance values of double precision (DP)
in GFlops obtained from HA-PACS.

14.0.4.211, Intel MPI Library 4.1 for Linux, and NVIDIA Cuda compiler driver version 6.5.14.

4. Implementation of hybrid parallel CUDA code for multiple GPUs system

In Ref. [14], we developed a hybrid parallel C++ program to calculate the 52 channels of the
four-point correlation functions by using both MPI and OpenMP. The program works on either
Bridge++ or CPS++, where both modified versions are employed. For Bridge++, feasibility of two
frameworks, OpenCL and OpenACC, to utilize the GPU is discussed [16]. In this work, we adopt
NVIDIA’s CUDA programming for the first testbed implementation, because thetarget machine is
HA-PACS comprising NVIDIA’s Fermi and Kepler generation GPUs so thata better performance is
expected with developing the CUDA programming than others. We also, in this work, aim to mate-
rialize the multi-GPU execution on the hybrid parallel programming with MPI and OpenMP by the
single-program multiple-data (SPMD) programming model. In order to utilize multipleGPUs from
a single program, we assign one MPI process to each GPU. Basic arithmetic of double-precision
complex-numbers is implemented by hand with utilizing shared memory. Constant memory is em-
ployed to store runtime parameters and constant parameters. In the following, we describe three
CUDA kernels implemented to calculate the 52 channels of the NBS wave functions.
(i) NNNooorrrmmmaaalllBBBaaarrryyyooonnnBBBllloooccckkksss : Assuming that the quark propagators are already solved, we first
compute the normal baryon blocks on GPUs:

[B(0)
α ](~r; ξ ′

1,ξ ′
2,ξ ′

3) =
〈
Bα(~r) q̄′3(ξ ′

3)q̄
′
2(ξ ′

2)q̄
′
1(ξ ′

1)
〉
, with B = p,Σ+,Ξ0,Xu,Xd,Xs, (4.1)

where three quark flavorsq′1,q
′
2,q

′
3 are appropriately chosen to create the correspondingB state.

The other baryon blocks,B = n,Σ−,Ξ−,Σ0,Λ, are obtained from the above according to Eqs. (2.2)
and (2.3) with presuming the symmetricity under the interchange of up and downquarks in the
isospin symmetric limit. After the kernel execution, the FFT is employed to obtain the baryon
blocks in momentum space. No clear benefit nor clear disadvantage is observed in performing the
FFT whether on host side or on device side; the bottleneck is due to theAlltoall MPI communica-
tions for the FFT. The data of normal baryon blocks are replaced by its in momentum space after
the FFT.
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(ii) EEE fff fff eeeccctttiiivvveeeBBBaaarrryyyooonnnBBBllloooccckkksss : We construct the effective baryon blocks from the normal baryon
blocks in momentum space,

{
[
˜
B(d)

1,α1
]ξ̃ξξ d

(~q), [
˜
B(d)

2,α2
]ξ̃ξξ d

(−~q);α3,α4

}
, with B = p,Σ+,Ξ0,Xu,Xd,Xs, (4.2)

where{ξ̃ξξ d} denotes the indices which originate from the quark fields in the source; forexample,
in Eq. (2.7), it becomes{none}, {c′3,c

′
6}, {c′2,α ′

2,c
′
4,α ′

4}, {c′1,α ′
1,c

′
5,α ′

5}, {c′1,α ′
1,c

′
6}, {c′3,c

′
5,α ′

5}
for the six terms of the four-point correlator of the channel〈pΛpXu〉. In order to avoid the warp
divergence, the diagramatical classification is performed throughout in the CPU code and the re-
sultant data is aligned in Structure of Arrays (SoA) format which is transferred to the device prior
to the kernel execution. This kernel execution has less timing performance impact though it is
indispensable to connect the former part and the next part. Thereforewe have not paid very much
attention to improve the performance of this kernel.
(iii) MMMuuullltttiiipppllliiicccaaatttiiiooonnnEEE fff fff eeeccctttiiivvveeeBBBllloooccckkksss : Performed the kernel executions described in the above,
we make the product of two effective baryon blocks on GPUs,

(
[
˜
B(d)

1,α1
](~q)× [

˜
B(d)

2,α2
](−~q)

)

α3α4

= ∑̃
ξξξ d

(
[
˜
B(d)

1,α1
]ξ̃ξξ d

(~q) [
˜
B(d)

2,α2
]ξ̃ξξ d

(−~q)

)

α3α4

. (4.3)

For entire 52 channels of the NBS wave functions, we have to consider allof such summations tab-
ulated in Tables 1-4 in Ref. [14]. This is one of the time consuming part of the present calculation.
The symbolical manipulations are performed in the CPU code and the resultantSoA formed data
is transferred to GPU to suppress the warp divergence prior to the kernel execution. To have good
overlapping the kernel executions and the data transfer between the host and device, especially for
the K20X GPU, we also utilize thecudaStream objects. The NBS wave function is finally obtained
by performing the inverse FFT.

5. Results

Table 2 shows the performance values of double-precision computation in GFlops using single
GPU for each single kernel execution ofNormalBaryonBlocks, EffectiveBaryonBlocks or Multipli-
cationEffectiveBlocks with L3×T = 163×32 lattice measured on the base cluster part (M2090)
or the TCA part (K20X). We also list the sustained GFlops values handled by cudaStream for the
kernel executions ofNormalBaryonBlocks andMultiplicationEffectiveBlocks in parentheses. The

Kernel Tesla M2090 Tesla K20Xm
NormalBaryonBlocks 98 (98) 94 (95)
EffectiveBaryonBlocks 3.1 0.55
MultiplicationEffectiveBlocks 8.2 (8.0) 3.2 (27)

Table 2: The performance values in GFlops using single GPU for each single kernel execution ofNormal-
BaryonBlocks, EffectiveBaryonBlocks or MultiplicationEffectiveBlocks, measured on the base cluster part
(M2090) or on the TCA part (K20X). The calculation is performed in an accuracy of double precision with
the lattice sizeL3×T = 163×32. In parentheses the sustained performance values handled by cudaStream
are shown for the kernel executions ofNormalBaryonBlocks andMultiplicationEffectiveBlocks in GFlops.
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Figure 1: Strong scaling of the CUDA kernel execu-
tions with the lattice sizeL3×T = 163×32.
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Figure 2: Weak scaling of the CUDA kernel execu-
tions with the lattice sizeL3×T = 163×32 per GPU.

handling of kernel executions forMultiplicationEffectiveBlocks by cudaStream lifts up the per-
formance for the K20X more than factor 8 whereas no improvement is observed for the M2090.
This is because the different architecture between the M2090 and the K20X; the compute capa-
bility of M2090 (K20X) is 2.0 (3.5). Figure 1 shows the strong scalings of twokernel execu-
tionsNormalBaryonBlocks (NBB) andMultiplicationEffectiveBlocks (MEB) with total lattice size
L3×T = 163×32 measured on the base cluster part (M2090) and the TCA part (K20X). In par-
allelizing across multiple GPUs, we take both two approaches by dividing the time dimension and
by dividing the spatial dimensions, which are indicated by “T-parallel” and “L-parallel” in the fig-
ure. Detailed parameters which specifies the load on each GPU are adjustedon each measurement.
Figure 2 shows the weak scalings of two kernel executionsNormalBaryonBlocks (NBB) andMul-
tiplicationEffectiveBlocks (MEB) for (an-)isotropic lattice with sizeL3×T = 163× 32 per GPU
measured on the base cluster part (M2090) and the TCA part (K20X).

6. Summary

In this paper, we present a recent effort to develop the hybrid parallel GPGPU program for
multiple devices that calculates the 52 channels of the NBS wave functions. The implementation
and the performance measurements are performed by using HA-PACS supercomputer in University
of Tsukuba, which comprises the base cluster part including NVIDIA M2090 and the TCA part
including NVIDIA K20X. In order to have better performance by using theGPUs, we adopt CUDA
programming for the first testbed implementation. In performing the FFT, no clear benefit nor clear
disadvantage is observed whether by using CPUs or by using GPUs. Three kernel programs are
implemented by considering the data ordering on the device memory, suppression of the warp
divergence, and making use of the shared memory and the constant memory. We also employ
the cudaStream to perform efficiently the kernel executions as well as thedata transfers between
the host and device because the data transfers are indispensable for the large scale calculation of
52 channels of the NBS wave functions. The strong scaling and the weak scaling are measured
for the kernel executions. Distinct difference between the M2090 and the K20X is observed in

6
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the sustained performance measurement of the particular kernel executions; handling of kernel
executions by using cudaStream is a key to make better use of latest GPUs in this approach.
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