
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
4

Overlap fermions on GPUs

Nigel Cundy∗

Lattice Gauge Theory Research Center, FPRD, and CTP, Department of Physics & Astronomy,

Seoul National University, Seoul, 151-747, South Korea

E-mail: ndcundy@gmx.com

Weonjong Lee

Lattice Gauge Theory Research Center, FPRD, and CTP, Department of Physics & Astronomy,

Seoul National University, Seoul, 151-747, South Korea

We report on our efforts to implement overlap fermions on NVIDIA GPUs using CUDA, com-

menting on the algorithms used, implemetation details, and the performance of our code.

The 33rd International Symposium on Lattice Field Theory

14 -18 July 2015

Kobe International Conference Center, Kobe, Japan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
4

Overlap fermions on GPUs Nigel Cundy

1. Introduction

The overlap Dirac operator [1] is the only known practical lattice Dirac operator with exact

chiral symmetry. It has various advantages over other discretisations, including: an exact chiral

symmetry, no additive mass renormalisation, a solid definition of the topology, automatic O(a)

improvement, and good topological properties. However, it also has two major disadvantages: it

requires a great deal more computational power than other actions, and the algorithms (such as

the HMC algorithm used to generate gauge field ensembles [2]) are considerably more complex.

Therefore, to use overlap fermions in simulations of lattice QCD, it is necessary to have both an

efficient algorithm and a good numerical implementation on the best available computer hardware.

A GPU cluster provides a powerful, low (financial) cost, and energy efficient supercomputer.

The GPU is a massively parallel co-processor, and because of the needs of the gaming industry, the

computational power of the GPU is continually increasing while the price remains stable. GPUs

also tend to be more energy-efficient than an equivalent CPU cluster. However, GPUs can be

adapted to any easily parallelized computation, which makes them ideally suited for lattice QCD.

NVIDIA has been particularly supportive of this effort, and have provided a high-level program-

ming language, CUDA, as an extension to C++. Existing lattice codes can thus be easily adapted

to make use of the GPU. The GPU architecture is ideally suited for overlap fermions, which are

still limited to relatively small volumes and coarse lattice spacings. The main limitation of a GPU

is memory bandwidth and its physical memory limitations, meaning that on larger volumes it is

necessary to set up a GPU cluster, increasing the communication costs.

These proceedings are an initial report on an attempt to write an overlap production code for

the GPU architecture. Our initial intention was to extend the QUDA library [3] (a specialised GPU

library for lattice QCD) for our purposes, but we found that the Wilson-fermion centred structure

(for example odd-even preconditioning, and the difficulty of merging the QUDA Wilson operator

into our other codes) made it harder to write an optimal code. We therefore ending up writing

our own code entirely, though parts of it are influenced by QUDA. Our code is built on the C++

Columbia Physics System library [4], which provides the various low-level CPU routines.

In section 2 we provide details of our implementation and choices made when developing the

algorithm. In section 3, we show the results of various numerical tests, comparing our code against

both the CPU and our initial QUDA implementation, and we conclude in section 4.

See [5] for another project describing a GPU implementation of overlap fermions.

2. Implementation Details

The overlap Dirac operator at mass parameter µ is defined as

D[µ ] =
1

2
(1+µ +(1−µ)γ5sign(K)). (2.1)

K is the sign function kernel. We use the Wilson operator, K = γ5(DW −mw), with mW = 1.5 and

(DW ψ)(x) = 4−
1

2 ∑
µ

[

(1− γµ)Uµ(x)ψ(x+aµ̂)+ (1+ γµ)U
†
µ(x−aµ̂)ψ(x−aµ̂)

]

. (2.2)

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
4

Overlap fermions on GPUs Nigel Cundy

Memory (MiB) 6144

Memory Bandwidth (Global Memory) (GB/s) 288

Single Precision Processing Power (GFlops) 4500

Double Precision Processing Power (GFlops) 1500

Table 1: The Memory, Memory Bandwitdth and Processing power of a NVIDIA GK110 (GeForce GTX
Titan) GPU.

Lattice Size Action Sea Mass Valance Mass a−1 (GeV) mπ a

83
×32 Overlap 0.01 0.05 1.7 0.662(19)

83
×32 Overlap 0.01 0.01 1.7 0.366(72)

203
×64 Asqtad (MILC [7]) 0.01+0.05 0.01 ∼1.6 0.276(2)

203
×64 Asqtad (MILC [7]) 0.01+0.05 0.0033 ∼1.6 0.173(2)

Table 2: Details of the ensembles used for our tests. All ensembles used a Lüscher-Weisz gauge action.

For our tests, we apply 3 steps of over-improved stout smearing [6] with parameters ρ = .1, ε =

−0.25. We calculate the matrix sign function using a Chebyshev polynomial approximation and

deflation of the smallest eigenvector/eigenvalues pairs, φi and λi, of K

sign(K) =∑
m

αmTm(K)+∑
i

φiφ
†
i

[

sign(λi)−∑
m

αmTm(λi)

]

. (2.3)

Tm are the Chebyshev polynomials of the first kind, and αm are the appropriate coefficients to

give an approximation to the sign function. We used the Chebyshev polynomial to approximate the

matrix sign function because it provides a good approximation (its cost is comparable to the optimal

Zolotarev rational approximation), but, needing just a short three vector recurrence, it requires less

memory than the five dimensional approximation or a rational approximation. GPU applications

can be limited by the amount of memory. This is particularly true for overlap fermions, where for

optimal performance, we need to hold the vectors for the outer inversion, preconditioning inversion,

sign function approximation, and eigenvalue deflation simultaneously in the GPU or CPU memory.

We pre-compute a number of eigenvectors φ (the number calculated is limited by the system

memory; the number used is varied according to the desired precision of the matrix sign function

approximation) efficiently, and with negligible overall cost, using a polynomial preconditioned

implicitly restarted Lanczos routine. These eigenvectors are stored in CPU memory. We performed

the deflation on the CPU while the GPU computed the matrix sign function, using pthreads to allow

the two routines to run simultaneously. This proved to be more efficient than copying all the kernel

eigenvectors to the GPU to deflate on the GPU.

Our tests are performed on a Desktop Computer, with a quad core Intel Xeon (2.5 GHz), and

two NVIDIA GK110 (GeForce GTX Titan) GPUs. The details of our computer are shown in table

1. The performance of our code is primarily limited by memory bandwidth. We tested our code on

two sets of lattices, at two different (partially quenched/mixed action) masses. The parameters of

our configurations are shown in table 2.

CUDA is an extension to C++ that incorporates kernels, to be run on the GPU, as well as

routines to transfer memory from the GPU to the CPU. The GPU serves as a very highly threaded

co-processor for the CPU. The memory on the GPU is stored in various locations. Shared memory

and registers have the fastest access, then the cached texture and constant memory, followed by the

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
4

Overlap fermions on GPUs Nigel Cundy

global memory, which holds most of the data. There are two primary memory bottlenecks: trans-

fer from the GPU to the CPU (very slow) and transfer from global memory to the registers (very

important). The GPU/CPU bottleneck is not so significant for our code, since most calculations

are performed entirely on the GPU, and we can overlap CPU/GPU communication and compu-

tation. One important optimization of the code was to merge numerous CUDA kernels together.

This saves on memory bandwidth between global memory and the registers, and reduces the ker-

nel launch overhead. The most important gain was by merging together the Wilson matrix and

polynomial algebra for the matrix sign function into a single GPU kernel. Because of these unique

needs, it was difficult to integrate our code into the QUDA library. We therefore wrote our own

Wilson Matrix kernel, linear algebra routines, and GPU/CPU transfer routines, though based on

the implementation in QUDA. Unlike QUDA, we do not use odd/even preconditioning.

We tested two different routines to invert the overlap operator. The first routine, which we la-

bel as GMRESR(eigSUMR), used a relaxed nested inversion [8] with a low accuracy eigSUMR [8,

9, 10] algorithm used as a pre-conditioner for recursive GMRES [11]. This is known to perform

efficiently, because the bulk of the computation only requires a low-accuracy matrix sign function,

but it requires the costly pre-calculation of the overlap eigenvectors (albeit to a very low accu-

racy), and performs poorly on large lattice volumes. The second approach, GMRES(αMGOv),

followed [12], using the Wilson operator (with a tuned mW ) as a pre-conditioner for the overlap op-

erator. The Wilson operator was inverted using an adaptive multigrid algorithm, αMG [13], which

is a combination of inexact deflation (we used 10 inexact deflation vectors) and the Schwartz Alter-

nating Procedure (SAP). Optimal performance for GMRES(αMGOv) required tuning mW , which

we accomplished by running the inverter for a fixed number of steps, using an iterative procedure

to find the mW which produced the lowest residual. mW needs to be tuned once per ensemble, since

the optimal mW did not vary much from one configuration to another, and a slightly sub-optimal

mW does not significantly affect the performance. This tuning of mW is considerably faster than the

computation of the overlap eigenvectors. We have not yet fully optimised our αMG algorithm.

These tests used a Lanczos procedure to compute the overlap eigenvectors [10], however this

routine performs poorly since it is not possible to significantly relax the accuracy of the matrix sign

function. We also tried a Jacobi-Davidson (JD) algorithm, but found that it would not work effi-

ciently on larger lattices. JD involves inverting the overlap operator minus a guess of an eigenvalue

(projected into the subspace orthogonal to the eigenvector), and the eigenvalues were too densely

packed to allow any convergence. Our current approach is to use an accelerated CG minimisation

of the Ritz functional for a rational approximation of the overlap operator. This transfers compu-

tation from an eigenvalue routine to an inversion, where we use the efficient GMRES(αMGOv)

algorithm. Although this has proven more efficient than the other methods, we are still not com-

pletely satisfied with this algorithm, and are still searching for alternatives. Therefore we will not

report on the performance of our eigenvalue routines here.

3. Numerical Results

Table 3 gives a comparison between QUDA and our code (OC) for various routines for 1 and

2 processors. We obtain a similar performance for the Wilson operator. We get an improved sign

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
4

Overlap fermions on GPUs Nigel Cundy

Lattice 8332 1 GPU 8332 2 GPU 8332 1 GPU 8332 2 GPU

Wilson Matrix (10−3s) 0.236 0.195 0.248 0.172

Sign Function (s) 0.2282 0.1716 0.1448 0.1396

Lattice 20364 1 GPU 20364 2 GPU 20364 1 GPU 20364 2 GPU

Wilson Matrix (10−3s) 7.092 3.842 6.759 3.625

Sign Function (s) 16.58 9.17 15.31 8.71

Table 3: A comparison between the QUDA and our own code’s performance for the Wilson Matrix and
Matrix Sign function. The middle panel refers to the results on QUDA, and the right panel with our own
code.

Routine (1 GPU) CPU GPU peak CPU GPU peak

Wilson Matrix (10−3s) 5.59 0.248 43.5% 180.4 6.759 49.9%

γ5 (10−3s) 0.555 0.105 19.4% 18.92 0.885 71.8%

Chebyshev sign function(s) 8.63 0.122 42.6% 3163 14.95 41.7%

z = ax+by (10−3s) 1.58 0.202 15.5% 58.2 1.50 65.0%

Routine (2 GPU) CPU GPU peak CPU GPU peak

Wilson Matrix (10−3s) 3.43 0.172 32.4% 107.8 3.625 46.5%

γ5 (10−3s) 0.333 0.047 16.4% 1.21 0.454 70.0%

Chebyshev sign function (s) 4.67 0.090 30.2% 1925 7.869 40.2%

z = ax+by (10−3s) 0.441 0.288 6.2% 37.3 0.897 54.4%

Table 4: A comparison between GPU and CPU performance. The middle panel refers to results on the
83

× 32 lattice, and the right panel to results on the 203
× 64 lattice.

function performance compared to an implementation which used the QUDA Wilson operator since

we could partly merge the Wilson operator and the rest of the sign function code.

Table 4 gives a comparison between CPU and GPU performance for various key routines,

and two of these sets of results are presented graphically in figure 1. The peak performance is a

comparison with the best possible time given the processing power and optimal memory bandwidth

(from GPU global memory to the GPU registers). It excludes various effects which will also take

up computational time, such as: the start-up time for a GPU kernel, MPI communication between

processors and the GPU and CPU, and any cost caused by portions of the GPU running idle (we

cannot use all the available threads for some parts of some routines because of a lack of registers

on the GPU).

Our comparisons of the inversion algorithms are shown in table 5 and figure 2. We use a rela-

tive inversion accuracy of 10−6 for Wilson fermions (using single precision) and 10−13 for overlap

fermions (using mixed precision). We see more than a factor of 36 gain for αMG over a straight-

forward CG inversion for the Wilson operator on our largest volume. The GMRES(αMGOv) algo-

rithm is superior to GMRES(eigSUMR) by about a factor of 5 on our largest volume and smallest

quark mass. It has much better scaling with lattice volume than the eigSUMR routine.

4. Conclusions

We have implemented a code for overlap fermions on GPUs using the CUDA programming

language. Our code runs a factor of 200 faster than the CPU code for the matrix sign function

on our larger test lattices. Our code scales well with the number of processors in our production

environment. Our Wilson operator and linear algebra routines are competitive with the QUDA

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
4

Overlap fermions on GPUs Nigel Cundy

 0

 50

 100

 150

 200

 250

 300

Wilson Matrix

 (1 CPU)

Wilson Matrix

 (1 GPU)

Wilson Matrix

 (2 CPU)

Wilson Matrix

 (2 GPU)

P
e
rf

o
rm

a
n

c
e
 (

s-1
)

 

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

Sign Function

 (1 CPU)

Sign Function

 (1 GPU)

Sign Function

 (2 CPU)

Sign Function

 (2 GPU)

P
e
rf

o
rm

a
n

c
e
 (

s-1
)

 

Figure 1: A comparison between CPU and GPU performance for the Wilson operator (left) and the Cheby-
shev approximation to the matrix sign function (excluding deflation) (right) on the 203

× 64 lattice.

Volume # µ CG Wilson αMG GMRES(eigSUMR) GMRES(αMGOv)

83
×32 1 0.05 0.123 0.108 9.34 19.51

83
×32 1 0.01 0.299 0.232 10.67 45.27

83
×32 2 0.05 0.114 0.091 7.09 12.93

83
×32 2 0.01 0.220 0.161 9.29 29.14

203
×64 2 0.01 75.3 1.97 4030 1086

203
×64 2 0.0033 65.76 1.83 12396 2571

Table 5: A comparison between the performance of the αMG routine against a straight CG inversion of
the Wilson operator and between the overlap inversions using deflation and the Wilson operator as a pre-
conditioner. The timings are given in seconds. # refers to the number of GPUs used in the computation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

CG 

(µ 0.01)

αMG 

(µ 0.01)

CG 

(µ 0.003)

αMG 

(µ 0.003)

P
er

fo
rm

an
ce

 (
s-1

)

 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

eigSUMR 

(µ 0.01)

αMGOv 

(µ 0.01)

eigSUMR 

(µ 0.003)

αMGOv 

(µ 0.003)

P
er

fo
rm

an
ce

 (
1

0
-3

 s
-1

)

 

Figure 2: The times required for the Wilson CG and adaptive multigrid inverters (left) and the overlap invert-
ers (right) running on 2GPUs on the 203

×64 lattice. The labels on the right plot indicate the preconditioner
inside the GMRESR algorithm.

library. We have implemented inversion, eigenvalue, and conserved current routines using the

latest algorithms. We have confirmed that the GMRES(αMGOv) algorithm performs well on large

volumes on GPUs. We are able to perform an overlap inversion on 2 CPU/GPUs on a 203
× 24

lattice at mπ ∼ 280MeV in ∼ 40 minutes. Eigenvalue routines for overlap fermions remain a

bottleneck, but we have been working on finding a better algorithm. This code will eventually be

used for calculations of BK and εK to check the ongoing SWME Staggered simulations [14].

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
3
4

Overlap fermions on GPUs Nigel Cundy

Acknowledgements

Computations were performed on a desktop computer at Seoul National University. This re-

search was supported by Basic Science Research Program through the National Research Founda-

tion of Korea(NRF) funded by the Ministry of Education(2014063535). W. Lee is supported by

the Creative Research Initiatives Program (No. 2015001776) of the NRF grant funded by the Ko-

rean government (MEST), and acknowledges the support from the KISTI supercomputing center

through the strategic support program for the supercomputing application research (No. KSC-

2014-G3-002).

References

[1] H. Neuberger Phys. Lett. B417 (1998) 141–144, [hep-lat/9707022]; H. Neuberger Phys. Rev.

D57 (1998) 5417–5433, [hep-lat/9710089]; H. Neuberger Phys. Rev. Lett. 81 (1998)
4060–4062, [hep-lat/9806025]; R. Narayanan and H. Neuberger Nucl.Phys. B443 (1995)
305–385, [hep-th/9411108].

[2] N. Cundy et al. Comput. Phys. Commun. 180 (2009) 26–54, [hep-lat/0502007]; N. Cundy,
S. Krieg, T. Lippert, and A. Schafer Comput. Phys. Commun. 180 (2009) 201–208,
[arXiv:0803.0294]; N. Cundy Comput. Phys. Commun. 180 (2009) 180–191,
[arXiv:0706.1971].

[3] M. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi Comput.Phys.Commun. 181 (2010)
1517–1528, [arXiv:0911.3191]; R. Babich, M. A. Clark, and B. Joo arXiv:1011.0024.

[4] RBC, UKQCD Collaboration, C. Jung PoS LATTICE2013 (2014) 417.

[5] B. Walk, H. Wittig, E. Dranischnikow, and E. Schomer PoS LATTICE2010 (2010) 044,
[arXiv:1010.5636]; B. Walk, H. Wittig, and E. SchÃűmer The European Physical Journal

Special Topics 210 (2012), no. 1 189–199.

[6] C. Morningstar and M. J. Peardon Phys. Rev. D69 (2004) 054501, [hep-lat/0311018]; P. J.
Moran and D. B. Leinweber Phys. Rev. D77 (2008) 094501, [arXiv:0801.1165].

[7] MILC Collaboration, A. Bazavov et al. Rev.Mod.Phys. 82 (2010) 1349–1417,
[arXiv:0903.3598].

[8] G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, et al. Lecture Notes in Computational

Science and Engineering 47 (2003) 153–167, [hep-lat/0311025].

[9] Jagels and Reichel Numerical Linear Algebra with Applications 1(6) (1994) 555.

[10] A. Stathopoulos and K. Orginos SIAM J.Sci.Comput. 32 (2010) 439–462, [arXiv:0707.0131];
N. Cundy and W. Lee arXiv:1501.0185.

[11] N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, T. Lippert, et al. Comput.Phys.Commun. 165

(2005) 221–242, [hep-lat/0405003].

[12] J. Brannick, A. Frommer, K. Kahl, B. Leder, M. Rottmann, and A. Strebel Numer. Math. (2015)
[arXiv:1410.7170].

[13] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann SIAM J.Sci.Comput. 36 (2014)
A1581–A1608, [arXiv:1303.1377].

[14] SWME Collaboration, J. A. Bailey, Y.-C. Jang, W. Lee, and S. Park arXiv:1503.0538; SWME

Collaboration, J. A. Bailey, Y.-C. Jang, W. Lee, and S. Park arXiv:1503.0661.

7


