
P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
6

Adaptive algebraic multigrid on SIMD architectures∗

Simon Heybrocka,b, Matthias Rottmannc, Peter Georga, Tilo Wettig†a

aDepartment of Physics, University of Regensburg, 93040 Regensburg, Germany
bData Management and Software Centre, European Spallation Source, Universitetsparken 5,
2100 Copenhagen, Denmark
cDepartment of Mathematics, University of Wuppertal, 42097 Wuppertal, Germany
E-mail: tilo.wettig@ur.de

We present details of our implementation of the Wuppertal adaptive algebraic multigrid code
DD-αAMG on SIMD architectures, with particular emphasis on the Intel Xeon Phi processor
(KNC) used in QPACE 2. As a smoother, the algorithm uses a domain-decomposition-based
solver code previously developed for the KNC in Regensburg. We optimized the remaining parts
of the multigrid code and conclude that it is a very good target for SIMD architectures. Some of
the remaining bottlenecks can be eliminated by vectorizing over multiple test vectors in the setup,
which is discussed in the contribution of Daniel Richtmann.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan

∗Work supported by the German Research Foundation (DFG) in the framework of SFB/TRR-55.
†Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:tilo.wettig@ur.de

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
6

DD-αAMG on SIMD architectures Tilo Wettig

1. Introduction

In order to solve the Dirac equation Du= f on large lattices we usually use an iterative method
and a preconditioner M with M−1 ≈D−1. Writing DM−1Mu=DM−1v= f we first solve for v with
the preconditioned matrix DM−1, which is much better behaved than D, and then obtain u = M−1v.
In each iteration the residual rn = f −DM−1vn gives an indication of how close we are to the true
solution. Formally, the residual can be written as a linear combination of the eigenmodes of D.
The art is to find a preconditioner that eliminates, or at least reduces, the contributions of these
eigenmodes to the residual. Adaptive algebraic multigrid (MG) [1] is such a preconditioner, and
here we focus on the Wuppertal version DD-αAMG [2]. It consists of two parts, a coarse-grid
correction (CGC) that reduces the contributions of the low modes and a domain-decomposition
(DD) based smoother that reduces the contributions of the high modes [3].

In this contribution we implement and optimize the Wuppertal code for SIMD architectures.1

Our main target is the Intel Xeon Phi processor (KNC) used in QPACE 2, but our code can easily be
adapted to other SIMD-based architectures. For the smoother we use the code already developed
for the KNC in Regensburg [4]. Here we mainly focus on the remaining parts of the code.

2. Description of the algorithm

Some preliminaries: The lattice volume V is divided into Nblock blocks. To implement γ5-sym-
metry DD-αAMG defines, for each block, two aggregates that contain the left- and right-handed
spinor components of the fields, respectively.2 The outer Dirac solver is FGMRES [5]. The MG
method consists of two parts: (1) the initial setup phase and (2) the application of the MG precon-
ditioner (Alg. 1) in every FGMRES iteration. For pedagogical reasons we first explain the latter.

2.1 MG preconditioner
In the coarse-grid correction (Alg. 2), we first restrict the current iteration vector of the outer

solver from a fine to a coarse grid using a restriction operator that approximately preserves the low
modes of the Dirac operator. How this operator is constructed is explained in Sec. 2.2. The Dirac
equation is then solved to low precision on the coarse grid, and the solution is lifted back to the fine
grid. The main point is that this solution approximates the low-mode content of the true solution.

To also approximate the high-mode content of the true solution, a DD-based smoother (Alg. 3)
is applied to the current iteration vector. The inverse block size acts as a cutoff for the low modes.
Thus, for vectors yhigh that do not contain modes below this cutoff, the smoother applied to yhigh

approximates D−1yhigh. If we use the solution from the coarse-grid correction (which approximates

Algorithm 1: MG preconditioner (V-cycle)
Input: right-hand side y
Output: approximate solution x of Dx = y

1 apply coarse-grid correction to y (Alg. 2)
2 apply smoother to y, with result from coarse-grid correction as starting guess (Alg. 3)
3 set x to result of smoother

1We restrict ourselves to an MG V-cycle with two levels (coarse grid and fine grid), for reasons explained in Sec. 3.
2I.e., an aggregate contains 6Vblock degrees of freedom, which we can enumerate with an index n = 1, . . . ,6Vblock.

2

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
6

DD-αAMG on SIMD architectures Tilo Wettig

Algorithm 2: Coarse-grid correction
Input: right-hand side y
Output: approximate solution x of Dx = y
// Restrict (i.e., project):

1 restrict vector y from fine to coarse grid: // dim(R) = 2NtvNblock ×12V

yc = Ry with R = diag(R`
1,R

r
1, . . . ,R

`
Nblock

,Rr
Nblock

) and R`/r
i from Alg. 5 (2.1)

// Coarse-grid solve to low precision using FGMRES with even/odd preconditioning: xc ≈ D−1
c yc

2 repeat
3 apply coarse-grid operator to current iteration vector
4 BLAS-like linear algebra (mainly Gram-Schmidt)
5 until norm of residual . 0.05

// Prolongate (i.e., interpolate):
6 extend solution vector from coarse to fine grid: x = Pxc with P = R†

Algorithm 3: Smoother (DD)
Input: right-hand side y, starting guess x0

Output: approximate solution x(Nsmoother) of Dx = y
1 split lattice into blocks
2 write D = B+Z with B = couplings within blocks and Z = couplings between blocks
3 for n = 1 to Nsmoother do
4 x(n) = x(n−1)+B−1(y−Dx(n−1)) // simplified; in practice SAP [3] is used

the low modes of the true solution) as a starting guess x0, the smoother works on yhigh = y−Dx0,
i.e., the low modes have been approximately eliminated from y by the subtraction of Dx0.

2.2 MG setup
In any MG method one needs to restrict from a fine to a coarse grid. In geometric MG, the

restriction proceeds by simply averaging subsets of the fields on the fine grid. Algebraic MG is
more sophisticated and includes nontrivial weight factors in the average. The art is to find good
weight factors so that the low modes of the operator to be inverted are approximately preserved
after the restriction.3 The purpose of the MG setup phase is the computation of these weight
factors. The main idea is to apply an iterative process through which more and more of the high-
mode components are eliminated. To this end, we define a set of test vectors {v j : j = 1, . . . ,Ntv}
(each of dimension 12V) that will, at the end of the iterative process, approximate the low-mode
components. The iterative process is described in Alg. 4, see [2] for details. Alg. 5 describes how
the restriction operator is constructed from the test vectors v j and how D is restricted to the coarse
grid.

3. Implementation details

The implementation of the DD-based smoother (Alg. 3) on a SIMD architecture is quite com-
plicated and described in detail in [4]. In contrast, the remaining parts of the DD-αAMG code are

3This is the same principle as inexact deflation [6].

3

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
6

DD-αAMG on SIMD architectures Tilo Wettig

Algorithm 4: MG setup

// Initial setup:
1 set the Ntv test vectors to random starting vectors
2 for k = 1 to 3 do
3 update each test vector by applying smoother with Nsmoother = k, with starting guess 0 (Alg. 3)

4 setup of restriction and coarse-grid operator (Alg. 5)
5 normalize the test vectors

// Iterative setup:
6 for i = 1 to Nsetup do
7 for j = 1 to Ntv do
8 apply CGC to test vector v j (Alg. 2)
9 apply smoother to test vector v j, with result from CGC as starting guess (Alg. 3)

10 replace test vector v j by result of smoother

11 setup of restriction and coarse-grid operator (Alg. 5)

Algorithm 5: Setup of restriction and coarse-grid operator
Input: test vectors {v j}
Output: restriction operator R and coarse-grid operator Dc

// Setup of restriction operator:
1 for i = 1 to Nblock do
2 foreach h = `,r do
3 set Rh

i to Ntv ×6Vblock matrix having in its rows the vectors v†
j restricted to aggregate Ah

i

4 run Gram-Schmidt on the rows of Rh
i

// Setup of coarse-grid operator by restriction:
5 for i = 1 to Nblock do
6 foreach j ∈ {i and nearest neighbors of i} do // optimize using (3.1)
7 compute couplings between sites i and j on coarse grid: // no sums over i, j, `,r(

D``
c D`r

c
Dr`

c Drr
c

)
i j

=

(
R`

i 0
0 Rr

i

)(
D``

i j D`r
i j

Dr`
i j Drr

i j

)(
P`

j 0
0 Pr

j

)
(2.2)

// dim(Dhh′
c)i j = Ntv, dim(Dhh′

i j) = 6Vblock

// (2.2) can be written as (Dc)
hh′
i j = Rh

i Dhh′
i j Ph′

j or as Dc = RDP with R defined in (2.1) and P = R†.

easier to vectorize since the number of components that can be treated on the same footing contains
a factor of Ntv (on the fine grid) or 2Ntv (on the coarse grid). If we choose this factor to be equal to
an integer multiple of the SIMD length NSIMD (i.e., the number of SIMD components) we achieve
perfect use of the SIMD unit.4 On the downside, DD-αAMG consists of many parts, most of which
take a non-negligible part of the total execution time. Therefore we need to vectorize/optimize all

4For the KNC, NSIMD = 16 in single precision. We use Ntv = 16 to 32. This choice is appropriate from an algo-
rithmic point of view. Should the algorithmic performance require Ntv to be unequal to an integer multiple of NSIMD
we would use ceil(Ntv/NSIMD) SIMD vectors on the fine grid and pad the last of these (and the corresponding memory
region) with zeros. Analogously for the coarse grid. E.g., for Ntv = 24 we need padding only on the fine grid.

4

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
6

DD-αAMG on SIMD architectures Tilo Wettig

Algorithm 6: SIMD implementation of Ry in (2.1)

1 for i = 1 to Nblock do
2 foreach h = `,r do
3 set (yc)

h
i = 0 in SIMD vectors (real and imaginary part) // dim(yc)

h
i = Ntv

4 for n = 1 to 6Vblock do // work on aggregate Ah
i

5 load real and imaginary part of column n of Rh
i into SIMD vectors

6 broadcast real and imaginary part of corresponding element of y into SIMD vectors
7 increase (yc)

h
i by complex fused multiply-add (corresponding to 4 real SIMD fmadds)

8 write (yc)
h
i to memory

of them. Before going into detail we briefly summarize general aspects of our work.
We streamlined the original Wuppertal code and removed some redundant or unnecessary parts

(e.g., some orthonormalizations). We reduced the memory consumption slightly by eliminating re-
dundancies and temporary copies. We threaded the code by decomposing the lattice into pieces that
are assigned to individual threads. Based on earlier microbenchmarks, we decided to use persistent
threads with synchronization points, rather than a fork-join model. Our SIMD implementation is
based on intrinsics for the Intel compiler. To facilitate efficient SIMD multiplication of complex
numbers, the data layout of R and Dc is such that real and imaginary parts are not mixed in the
same register. In this paper we only describe 2-level MG, where all KNCs work both on the fine
and the coarse grid. Many parts carry over to 3-level (or higher), with two exceptions: (1) since the
KNC has rather limited memory, more levels lead to more idle cores or even idle processors, and
(2) we currently do not have an efficient implementation of the DD smoother on a coarse grid.5

We now describe how the key components that needed to be optimized were implemented.
Restriction (Alg. 2): We vectorize the matrix-vector multiplication (2.1) for each aggregate

as described in Alg. 6. The vectorization is done such that the row index of R`/r
i runs in the SIMD

vector, i.e., the latter contains a column of R`/r
i if Ntv = NSIMD.6

Prolongation (Alg. 2): Similar to restriction but with R → P = R†. Since the aspect ratio of
the rectangular matrix is reversed, now the column index of P`/r

i (= row index of R) runs in the
SIMD vector. At the end an additional sum over the elements in the SIMD vector is required, which
makes prolongation somewhat less efficient than restriction.

Setup of coarse-grid operator (Alg. 5): In (2.2) we first compute Dhh′
i j Ph′

j , which corresponds
to the application of the sparse matrix Dhh′

i j to multiple vectors, i.e., the columns of Ph′
j . The vector-

ization of this operation is described in Alg. 7. The application of R to the result corresponds to a
restriction with multiple right-hand sides, which can be optimized as described in the contribution
of Daniel Richtmann [7]. As in the original Wuppertal code, we only compute (2.2) for i = j and
the forward neighbors. For the backward neighbors we use

(Dc)
hh
ji = (Dc)

hh†
i j and (Dc)

hh′
ji =−(Dc)

h′h†
i j (h 6= h′) . (3.1)

5For two levels this operator is not needed. For higher levels we cannot reuse our fine-grid DD smoother since it is
for a different operator.

6For Ntv 6= NSIMD footnote 4 applies. The need for padding on the fine grid could be reduced by combining R`
i

and Rr
i at the expense of a more complicated broadcast in Alg. 6. This is a tradeoff between memory bandwidth and

instruction count that we have not explored yet.

5

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
6

DD-αAMG on SIMD architectures Tilo Wettig

Algorithm 7: SIMD implementation of Dhh′
i j Ph′

j in (2.2).

1 for x ∈ block i do
2 set output = 0 in SIMD vectors (real and imaginary parts)
3 foreach µ ∈ {±1,±2,±3,±4} do
4 if x+ µ̂ ∈ block j then
5 load real and imag. parts of the 6 rows of Ph′

j corresponding to x+µ̂ into SIMD vectors
6 broadcast real and imag. parts of the 9 elements of SU(3) link Uµ(x) into SIMD vectors
7 increase output by complex fmadd (1+ γµ)

hh′Uµ(x)†Ph′
j (x+ µ̂)

8 if i = j and h = h′ then
9 load real and imaginary parts of the 6 rows of Ph

i corresponding to x into SIMD vectors
10 broadcast real and imaginary parts of the clover matrix elements Chh(x) into SIMD vectors
11 increase output by complex fmadd Chh(x)Ph

i (x)

In contrast to the original code we also store (Dc) ji since a transpose is expensive in SIMD (i.e.,
we perform the transpose only when the operator is constructed, but not when it is applied). The
coarse-grid operator can be stored in half precision to reduce working set and memory bandwidth
requirements. We did not observe any negative effects of this on stability or iteration count and
therefore made it the default.

Application of coarse-grid operator (Alg. 2): The spatial structure of Dc is similar to Wilson
clover. In (2.2), (Dc)i j 6= 0 only if i and j are equal or nearest neighbors. In that case (Dc)i j is
dense and stored in memory. Therefore the vectorization can be done as in the restriction.

Gram-Schmidt on aggregrates (Alg. 5): We do not use modified Gram-Schmidt [5] since (1)
classical Gram-Schmidt lends itself more easily to vectorization and needs fewer globals sums and
(2) stability of the Gram-Schmidt process is not expected to become an issue in the preconditioner.
To obtain better cache reuse and thus save memory bandwidth we use the block Gram-Schmidt
method [8]. As usual, the vectorization is done by merging the same components of the Ntv test
vectors in the SIMD vectors. The disadvantage of this strategy is that axpy operations and dot
products then waste parts (on average one half) of the SIMD vectors.

BLAS-like linear algebra on coarse grid (Alg. 2): In order to utilize the SIMD unit we would
need to change the data layout on the coarse grid. This change would propagate to other parts of the
code. We have not yet made this change since it requires nontrivial programming efforts, while the
impact on performance is not dominant. As a temporary workaround we sometimes de-interleave
real and imaginary parts on the fly to do a SIMD computation.

4. Performance and conclusions

In Tab. 1 we show the speedup obtained by vectorization of the MG components for a single
thread on a single KNC compared to the original Wuppertal code, for a lattice size of 84 that does
not fit in cache. In Fig. 1 we show how these improvements affect the contributions of the various
MG components to the total wall-clock time, for both setup and solve. We observe that the MG
parts that have been optimized (see Tab. 1) no longer contribute significantly to the execution time.
The smoother, which was optimized earlier, takes about 1/3 of the time. The main contribution

6

P
o
S
(
L
A
T
T
I
C
E

2
0
1
5
)
0
3
6

DD-αAMG on SIMD architectures Tilo Wettig

MG component Restrict. Prolong. Dc setup (Dc)i 6= j (Dc)ii GS on aggr.
SIMD speedup 14.1 8.6 19.7 20.2 19.5 10.8

Table 1: SIMD speedup for a single thread on a single KNC.

64 96 128

KNCs

0

5

10

15

20

Se
tu

p
ti

m
e[

s]

Coarse total (solve/iter. setup)
Iter. setup fine total
Init. setup total
Halo Exchange
Global Sums
Copy to MPI buffers

Computation (coarse)
On-chip sync. (coarse)
Other (Misc)
Smoother
D (fine)
GS (fine)

Restr. & Prolong.
Setup of Dc

Setup of P
Initializations
Alloc

64 96 128

KNCs

0

1

2

3

4

5

6

So
lv

e
ti

m
e[

s]

Figure 1: Strong-scaling plot of the contributions of various MG components to the execution time, for a
483×96 CLS lattice with β = 3.4, mπ = 220 MeV, and a = 0.086 fm. The algorithmic parameters are tuned
to minimize the total wall-clock time for the 128 KNC run. The simulations were performed on QPACE 2.

now comes from the coarse-grid solve. After our optimizations, its computational part has become
cheap so that off-chip communication (halo exchange and global sums) becomes dominant.

We conclude that DD-αAMG is a very good target for SIMD architectures. The run time is
now dominated by the communications in the coarse-grid solve, which will be optimized next.

The code presented here will be made publicly available in the near future. We thank Andreas
Frommer and Karsten Kahl for helpful discussions and Daniel Richtmann for producing the figures.

References

[1] R. Babich et al., Phys. Rev. Lett. 105 (2010) 201602 [arXiv:1005.3043].

[2] A. Frommer et al., SIAM J.Sci.Comput. 36 (2014) A1581 [arXiv:1303.1377].

[3] M. Lüscher, Comput.Phys.Commun. 156 (2004) 209 [hep-lat/0310048].

[4] S. Heybrock et al., Proceedings of SC ’14 (2014) 69 [arXiv:1412.2629].

[5] Y. Saad, Iterative Methods for Sparse Linear Systems: Second Edition (2003) SIAM.

[6] M. Lüscher, JHEP 0707 (2007) 081 [arXiv:0706.2298].

[7] D. Richtmann, S. Heybrock, and T. Wettig, PoS LATTICE2015 (2016) 035.

[8] W. Jalby and B. Philippe, SIAM J.Sci.Stat.Comp. 12 (1991) 1058.

7

http://dx.doi.org/10.1103/PhysRevLett.105.201602
http://arxiv.org/abs/1005.3043
http://dx.doi.org/10.1137/130919507
http://arxiv.org/abs/1303.1377
http://dx.doi.org/10.1016/S0010-4655(03)00486-7
http://arxiv.org/abs/hep-lat/0310048
http://dx.doi.org/10.1109/SC.2014.11
http://arxiv.org/abs/1412.2629
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1088/1126-6708/2007/07/081
http://arxiv.org/abs/0706.2298
http://dx.doi.org/10.1137/0912056

