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1. Introduction

In 2015, NVIDIA released a new GPU of the Maxwell architecture: GTX Titan X (TX). TX
GPUs have 20% higher computing power in the single precision (SP) floating point calculation
than GTX Titan Black (TB) GPUs of the Kepler architecture. = However, the former GPUs have
significantly less computing power in the double precision (DP) floating point calculation than the
latter GPUs by a factor of 1/7, if we compare their peak performance. Here, we would like to
compare the actual performance of TX GPUs with that of TB GPUs. For this purpose, we use our
conjugate gradient (CG) inverter code to check the SP performance of TX GPUs, and our non-
perturbative renormalization (NPR) code to probe the DP performance. The CG code adopts the
mixed precision algorithm. Hence, the SP calculation is dominant in this code. = The NPR code
calculates the matching factors in DP without much network communication. Hence, this code is
good for testing the DP performance.

2. GTX Titan X

Architecture Fermi Kepler Maxwell
GPU Model GTX 580 TITAN BLACK K40 TITAN X
SP TFLOPs 1.58 5.00 429 6.00
DP TFLOPs 0.20 1.30 1.43 0.19
Memory Size (GB) 1.5 6 12 12
L1 cache! (kB) 64 64 64 96
L2 cache (KB) 768 1536 1536 3072
Memory Bandwidth 192.4 336 288 336.5

Table 1: Chip specification of recent NVIDIA GPUs. For more details, please refer to Refs. [1, 2, 3].

In Table 1, we list chip specification for recent NVIDIA GPU models which we have been
using for our numerical study. In the table, there are three generations of GPU chip architecture:
Fermi (2010), Kepler (2012), and Maxwell (2014). TX GPUs are designed based on the Maxwell
architecture, which have twice more memory, twice more L2 cache and 50% more L1 cache! than
TB GPUs, while the memory bandwidth is about the same. One merit for TX is that its SP peak
performance is about 20% higher than that of TB. One superficial caveat is that the peak speed
of the DP calculation in TX GPUs is 1/7 of that of TB GPUs. We will address this issue later in
Section 4.

3. CG Performance

The conjugate gradient (CG) code uses the mixed precision algorithm for HYP-smeared stag-
gered quarks. Hence, the SP calculation in this code is absolutely dominant compared with the

Here, the nominal L1 cache means the memory shared by the L1 cache and the shared memory.
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Figure 1: CG performance on a single GPU in units of GFLOPS. The results are measured by running the
CG inverter code 10 times on the 20° X64 MILC asqtad lattice.

DP part. This code performs about 15000 iterations in our production job for B x on the 203 x 64
MILC asqtad coarse lattices. For each iteration, it uses network communication through infiniband
to transfer the data vector to the nearest neighbor nodes with 2 GPUs per node.

In Fig. 1, we present the SP performance of the CG code on a single TB or TX GPU obtained
using the same production job for Bx. Here, since we use only a single GPU for this test job, there
is no network communication involved through the infiniband. Theoretically, the ratio of the SP
peak performance between TB and TX GPUs is 1.2 as one can see in Table 1. Hence, we expect
that the SP performance will increase by 20% for TX. In practice, we obtain about 33(4)% gain in
the SP performance, which is significantly higher than the theoretical expectation.

In Fig. 2, we repeat the same kind of performance tests using the same production job on
multiple GPUs of TB or TX type. Here, we observe TX GPUs perform significantly better than
TB GPUs when we use the small number of GPUs ( =8). However, for more than 8 GPUs, TB
GPUs outperform TX GPUs. This indicates that we need to feed enough SP calculations above
a certain threshold (= 20 million SP floating point calculations per GPU per iteration in CG) in
order to obtain a significant gain using TX GPUs compared with TB GPUs. In Table 2, we present
numerical values of the data points in Fig. 2.

# of nodes H TB X H TX/TB ratio
1 81.11(95) 107.7(33) 1.328(44)
2 55.86(57) 68.86(58) 1.233(16)
4 40.38(44) 48.9(10) 1.212(29)
8 33.92(55) 34.614(68) 1.020(17)
16 21.74(55) 12.1(10) 0.566(50)
32 12.4(11) 8.07(73) 0.650(81)

Table 2: Data for CG performance on multiple GPUs. They are measured by running the CG code 10 times
on 20% x64 MILC asqtad lattice.



Performance of GTX Titan X GPUs Jeonghwan Pak

100 | e
D 80 B N
Ay
9
£ 60 -
o
=
O 40 1
20 1
1 2 4 8 16 32

GPUs

Figure 2: Scalability of CG performances in the unit of GFLOPS with multiple GPUs. The results are
obtained by running the CG code 10 times on the 20° X64 MILC asqtad lattice.

Therefore, in order to maximize the computing performance per GPU, it is better to use smaller
number of GPUs for a given production job. However, there are some caveats in this business:
first, the memory of TX GPUs are limited, and second, we need to make the running time of the
production job less than 2 hours in order to avoid hardware failure as much as possible. Hence, it is
necessary to run the production job on multiple GPUs which are usually greater than the smallest
number of GPUs. For example, when we run the production job on the 28 x96 MILC asqtad fine
lattices, it is ideal to use 4 TX GPUs in practice.

One ambiguity in this test is that the CPU configuration for TX GPUs is different from that
for TB GPUs. For TX GPUs, we use i7-5930K CPUs with 32 giga byte DDR4 RAM. For TB
GPUs, we use 17-4820K CPUs with 32 giga byte DDR3 RAM. DDR4 is slightly faster than DDR3.
In addition, i7-5930K CPU is slightly faster than i7-4820K CPU. Hence, this could make a tiny
difference in the above data shown in Figs. 1 and 2.

4. NPR performance

Here we present the performance of the non-perturbative renormalization (NPR) code in the
RI-MOM scheme. The NPR code use only the DP floating point calculation and does not have any
network communication with nearest neighbors during the NPR calculation. Hence, the NPR code
is very adequate to measure the DP performance of GPUs.

In the NPR code, the subroutine to calculate the one color trace four-fermion operator contrac-
tion occupies 97% of the total running time of the NPR code [4].

OﬁfZﬁf4 13\71(1 z) (%, ®&r) ABXz ,(z5) ch; (6, ®&r) CDX1L4(ZD)]
X Uiapl, e, (D WUical e, (2)

We present a general form of one-color trace four-fermion operators in Eq. (4.1). Here, Y and Y

“4.1)

represent staggered quark fields, and U;4p(z) represents a gauge link field. The subscripts S| and
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Figure 3: NPR performance, actually DP performance, in the unit of GFLOPS. The results are measured by
running the NPR code 10 times on the 20° X 64 MILC asqtad lattice at @ =0.12 f m.

S» represent the spin structure and the subscripts F; and F, represent the taste structure. In order to
measure the DP performance of GPUs, we use this subroutine which calculate the one color trace
four-fermion contraction.

As one can see in Table 1, the peak DP performance for TX is 1/7 of that for TB theoretically.
Hence, theoretically we expect that the NPR code runs 7 times faster on a TB GPU. In Fig. 3, we
present the DP performance of the NPR code on TB and TX GPUs. To our big surprise, it turns
out that the TX GPU outperform the TB GPU by 5.0(6)%.

What is the reason for this unexpected surprise? The answer is that our NPR code is dominated
by the data transfer between the GPU global memory and the CUDA cores. Hence, even though
the TB GPU has 7 times more DP calculation power than TX, the TB GPU cannot feed the data
into the CUDA cores as fast. The bottle neck is on the data transfer in the case of the NPR code.

Let us address this issue on the bottle neck in data transfer more systematically. Basically we
want to introduce a concept of the CGMA ratio (Compute to Global Memory Access) [5]. The
CGMA ratio is the number of DP floating point calculations per memory access. For example, let
us consider the calculation of C = A + B. There are three memory accesses to read data from A
and B and to save data into C. There is one DP floating point calculation for+. Hence, the CGMA
ratio for this calculation is 1/3.

GPU Model Memory bandwidth Peak performance Memory bandwidth CGMA for peak
(GB/sec) (GFLOPS) (GB/sec) for CGMA=1 performance
GTX 580 192.4 204.8 1638.4 8.5
TB 336 1331.2 10649.6 31.7
K40 288 1464.3 11714.6 40.7
TX 336.5 194.6 1556.5 4.6

Table 3: CGMA Ratio for various GPUs in units of [GFLOPS/(GB/sec)*Byte]

In Table 3, we present data for the CGMA ratio on various GPUs. ~ Here, we present the
memory bandwidth and the peak DP performance in the second and third columns, respectively.
In the fourth column, we present memory bandwidth required to achieve the CGMA ratio equal to
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Figure 4: Scalability of the DP performance on multiple GPUs. We use the NPR code to measure the DP
performance on TX or TB GPUs. on the 20° X 64 MILC asqtad lattices.

1. In other words, with this bandwidth we can achieve one to one ratio between the DP floating
point calculation and the data transfer. In the fifth column, we show the CGMA ratio for the peak
performance on each GPU.

The CGMA ratio of our NPR code is 2.96 [GFLOPS/(GB/sec)*Byte]. Let us assume that we
use the full memory bandwidth of each GPU. Then, we can achieve 124 GFLOPS for TB and 125
GFLOPS for TX at CGMA =2.96. Hence, we observe that this actual DP performance is much
lower than the theoretical peak. This indicates that the bottle neck is on the data transfer.

Then at CGMA = 2.96, we expect that TX GPUs will outperform TB GPUs only by 0.15%.
However, in practice we find a gain of 5.0(6)% in Fig. 3, which is much larger than the theoretical
expectation by an order of magnitude. At present, we do not understand this enormous amount of
gain in TX. This needs further investigation in the future.

In Fig. 4, we present the DP performance per GPU when we run the NPR code on multiple
GPUs. In Table 4, we summarize the actual values of the data points in Fig. 4. Since the NPR code
does not have data transfer to the nearest neighbors, we expect that the performance will be constant
regardless of the number of GPUs used for the measurement. The data in Fig. 4 is consistent with
this expectation. In this test jobs, TX GPUs outperform TB GPUs by about 5% regardless of the
number of GPUs. This large gain remains as a conundrum, which needs further investigation in the
future.

In our production job on NPR, we use 28 GPUs of TX or TB type on 28 3 X96 MILC asqtad
lattices. A single production job takes about 6.5 hours.

5. Conclusion

Recently NVIDIA has released a new GPU model, TX. Here, we present the results of our
performance test on TX GPUs and compare them with those on TB GPUs.
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# of nodes H TB X H TX/TB ratio
1 112.67(67) 118.3(17) 1.050(6)
2 112.23(79) 117.04(57) 1.038(9)
4 114.1(16) 116.84(65) 1.024(6)
8 112.3(13) 117.02(42) 1.042(4)
16 111.64(69) 117.11(37) 1.049(7)
32 110.99(90) 116.42(33) 1.049(3)

Table 4: DP performance per GPU in units of GFLOPS. The data describes the data points in Fig. 4.

In the SP performance test, TX outperforms TB by 33(4)%, which is significantly higher than
the theoretical expectation. This test is done using the CG code.

In the DP performance test with the NPR code, TX outperforms TB by 5.0(6)%, which is
dramatically larger than the theoretical expectation of 0.15% gain. At present, we do not understand
this gain very well. This needs further investigation in the future. The DP performance of TX with
the NPR code is controlled by the data transfer, which is the main bottle neck. Hence, in order to
increase the DP performance, we need to optimize the NPR code further for higher CGMA ratio.
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