PROCEEDINGS

OF SCIENCE

Lattice QCD code Bridge++ on arithmetic
accelerators

S. Motoki*, S. Aoki’, T. Aoyama‘, K. Kanaya“<, H. Matsufuru“, T. Miyamoto®,
Y. Namekawa’, H. Nemura/, Y. Taniguchi?, S. Uedas, and N. Ukita’

¢ Computing Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba
305-0801, Japan

b Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

¢ Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya
University, Nagoya 464-8602, Japan

4 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan

¢ Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University
of Tsukuba, Tsukuba 305-8571, Japan

I Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

& Theory Center, IPNS, High Energy Accelerator Research Organization (KEK), Tsukuba
305-0810, Japan
E-mail: EmotokiWpost . kek. jd

OpenCL and OpenACC are generic frameworks for heterogeneous programming combining CPU
and accelerator devices such as GPUs. We test incorporation of these two frameworks into the
Bridge++, a general-purpose code set for numerical simulations of lattice QCD, to offload the
time-consuming fermion matrix inversion to accelerator devices. We discuss advantages and dis-
advantages of these frameworks from the viewpoints of constructing reusable components based
on the object-oriented programming and of tuning the code to achieve a high performance.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:smotoki@post.kek.jp

Lattice QCD code Bridge++ on arithmetic accelerators S. Motoki

1. Introduction

Recent accelerator devices such as GPUs and Xeon Phi enable us to construct parallel cluster
computers of large computational power with relatively low cost. Accelerator devices have been
adopted in lattice simulations [0, @]. However, a big programming effort is required to offload
heavy tasks of hot spots to accelerator devices in recent QCD codes with hybrid parallelization
for multi-node and multi-thread machines. To achieve a high performance, we also need to op-
timize the code according to the architecture of each accelerator device. On the other hand, the
large variety of combinations of different physics projects and hardware architectures as well as
numerical algorithms forced the lattice community to develop general-purpose code sets for QCD
simulations. It is thus important to implement accelerator devices into a general-purpose code set.

To keep applicability to a wide range of physics problems and numerical algorithms, the com-
ponents of the code specific to each hardware should be separated and encapsulated into reusable
ingredients with the least interference. A guideline to develop such a code set is the object-oriented
programming (OOP) [B, B8, H]. In 2009, we have started a project to develop a general-purpose code
set for lattice QCD simulations that is widely applicable while based on uniform design policy. The
code set, named Bridge++, is written in C++ and developed so as to achieve readability, extensibil-
ity, and portability, while simultaneously keeping sufficient performance for productive research.
The project also aims at compiling the latest knowledge of modern programming techniques.

In this study, we incorporate accelerator devices into Bridge++. We adopt generic program-
ming frameworks for general accelerator devices. Several open source libraries have been devel-
oped to use some specific accelerator. An example is the QUDA [H] for NVIDIA GPUs, which is
a CUDA-based library for lattice QCD. Here, we want to develop a code for general accelerator
devices by establishing techniques to fully make use of their performance. Among available frame-
works, OpenCL and OpenACC are attractive because of their portability. Application of OpenCL
(@, B, B, [, IM] and OpenACC [, I] to lattice QCD have been started. We note these two frame-
works have contrasting features: OpenCL uses explicit API-based controls of the device, while
OpenACC is directive-based and a compiler generates procedures to use the device. In this paper,
we apply OpenCL and OpenACC in Bridge++ to offload a linear equation solver to accelerator de-
vices. From a point of view of constructing reusable components based on OOP and performance,
we evaluate feasibility of these two frameworks in Bridge++ through practical implementation.

2. Implementation

2.1 Strategy to use accelerator devices

To introduce accelerator devices into a simulation code, the following steps are necessary to
be executed.

(1) Get information of accelerators and setup environment.
(2) Setup kernel code.

(3) Allocate memory space for data on device.

(4) Transfer data from host to device.

(5) Execute kernel code.

Lattice QCD code Bridge++ on arithmetic accelerators S. Motoki

(6) Transfer data from device to host.

(7) Free the memory space on device.

In QCD simulations, we often encounter bottlenecks in the steps (4) and (6), because of a
limited bandwidth between host and device. This is a severe problem in the fermion matrix inver-
sion. To minimize the data transfer in these steps, preconditioning using a single precision solver
[B] or domain-decomposition [[J] are frequently employed. Since our current public version of
Bridge++ code assumes double precision for the gauge and fermion fields, we first generalize the
field container class to adopt any type of the data. As a counter part of a class Field, which
represents the field data, we introduce new template classes AF1ie1d<REALTYPE> on the host
and AField_dev<REALTYPE> on the accelerator device for a data type REALTYPE. At the
construction of an AField_dev instance, a memory space on the device is allocated. The linear
algebraic operations as well as the fermion operators corresponding to the above step (5) are also
prepared with the same interfaces as on the host. The solver algorithms are implemented with the
C++ template for both host and device field classes.

We also apply so-called coalesced memory access by changing the data layout on the device
from that on the host. To reduce memory transfer, the third column of SU(3) matrix in gauge field is
not transferred from the global memory but calculated on-the-fly using the relation vz = (v; X v2)*
where U = (vq,v2,v3) € SU(3).

2.2 Implementation with OpenCL

OpenCL (Open Computing Language) is an open standard framework for a parallel program-
ming in heterogeneous platforms. By specification, OpenCL is composed of the run-time APIs and
the OpenCL C language. The APIs control devices from the host programs. The OpenCL C is
for the device codes. On devices, threads run in parallel executing the same program. A thread is
called work-item, and a specified number of work-items are grouped to form a work-group. The
memories on the device are classified into four types: (i) Global memory: readable and writable
from all the work-items and from the host, (ii) Constant memory: read-only from all work-items
and readable and writable from the host, (iii) Local memory: shared by work-items within a work-
group, and (iv) Private memory: exclusively used by a work-item. The total number of work-items
and the size of work-group are tunable parameters at run-time.

Each step of the work flow in Sec. Tl is handled through OpenCL APIs. At the initialization
step (1), one needs to obtain the information of platforms and setup contexts and command queues
at the beginning of a program. If a run-time compiler is used, as we adopt, a kernel code is compiled
at the step (2). We encapsulate OpenCL APIs for these steps in a DeviceManager class, which
simplifies the procedures and switches the frameworks easily. This DeviceManager class also
wraps managements of device memory objects and data transfer between host and device. Each
object accesses to the device memory through the interfaces provided by the DeviceManager
class. The device code, described in OpenCL C language, is embedded as a string object at the
compilation of Bridge++, and then on-line compiled at the run-time. Using this mechanism, several
parameters and functions described as macros are replaced at the run-time. Changing the data
layout is realized by replacing the macro definition of an index, without modifying the kernel code.
At construction of an instance of AField_dev<REALTYPE> class, the associated memory space

Lattice QCD code Bridge++ on arithmetic accelerators S. Motoki

on the device is allocated through the DeviceManager class (the step (4) of the workflow), and is
released at the destruction (the step (7)). This class also contains methods to transfer data between
host and device (the steps (4) and (6)).

Using this DeviceManager class, as well as the fermion operators implemented similarly,
the solver algorithms can be constructed commonly to those on the host processor. The linear-
algebraic operations (for the step (5)) are prepared as methods. The kernel codes used in these
methods are compiled and cached through the DeviceManager, when the first instance is con-
structed.

2.3 Implementation with OpenACC

OpenACC is a directive-based extension of programming languages. The specification is de-
fined for C/C++ and Fortran. A compiler analyzes OpenACC directives, and generates procedures
for offloading data and tasks to accelerators. OpenACC assumes three levels in the processor:
gang, worker, and vector. For example, in the case of NVIDIA Tesla architecture, they correspond
to the streaming multi-processor, warp, and thread.

The following three kinds of directives are crucial.

Specification of parallel region Two directives, kernels and parallel, are defined to spec-
ify which part of the code is to be executed in parallel. kernels directive entrusts a com-
piler to analyze dependencies of variables. On the other hand, parallel directive does to
users. We use the latter in our implementation.

Memory allocation and data transfer data directive is a representative example. From Ope-
nACC 2.0, enter and exit directives are added, which allocate and free a memory space
on the device. Data transfer between host and device is executed by update directive. We
make use of these OpenACC 2.0 directives, so that before the parallel region the clause of
data directive is always present.

Specification of parallelized loop 1oop directive specifies the parallel region. With a clause,
one can identify which of gang, worker, and vector is assigned to the loop, and variables that
are private to the loop. Collapsing loops and specification of reduction can also be indicated
with clauses.

Since OpenACC libraries control devices implicitly by insertion of directives, we introduce
no new classes corresponding to the DeviceManager class for the case of OpenCL. Instead,
we simply add OpenACC directives to our code. The steps (1) and (2) of the work flow in Sub-
section 1l are automatically incorporated by the compiler. As in the case of OpenCL, we define
AField_dev<REALTYPE> class that represents field data on the device. At construction of an
instance of this class, the constructor allocates a memory space on the device by enter directive
(the step (3)). This device memory space is freed in the destructor by exit directive (the step(7)).
To transfer data between the host and device, member functions are defined using the update di-
rective (the steps (4) and (6)). This implementation enables explicit control of memory allocation
and data transfer through an abstract interface. The kernel code to execute the step (5) is generated
by a compiler at the parallel directive.

Lattice QCD code Bridge++ on arithmetic accelerators S. Motoki

Tesla K40 (Kepler) Tesla M2090 (Fermi) FirePro W9100

Performance(float) 4290 GFlops 1330 GFlops 5240 GFlops
Performance(double) 1430 GFlops 665 GFlops 2620 GFlops
Memory bandwidth 288 GB/s 177 GB/s 320 GB/s
Number of cores 2880 512 2816
Software CUDA 5.5/PGI 14.10 CUDA 5.5/PGI 14.10 SDK v.2.9/PGI 14.10

Table 1: Hardware and software environment.

In the AField_dev<REALTYPE> class, linear algebraic methods and fermion matrix mul-
tiplications are implemented in this manner. By replacing corresponding objects in the OpenCL
version with them, the solver algorithms work without any modification.

3. Performance

We report the sustained performance obtained by Bridge++ using OpenCL and OpenACC.
Table @ summarizes our test environment. Two types of accelerators are tested, NVIDIA and
AMD. OpenCL is managed by CUDA and AMD APP SDK, and OpenACC by PGI compiler.

As a representative example, we study the performance of a multiplication of the Wilson oper-
ator (represented as “mult”), and a conjugate gradient (CG) solver for Wilson fermions on a single
device. Our lattice size is 16> x 32.

Performance with OpenCL In Table D, we summarize the performance of our code on NVIDIA
and AMD GPUs !. This is an update of the result reported in Ref. [, I]. The run-time param-
eters for thread grouping are adjusted for each device. Except for the NVIDIA Tesla M2090 case,
the results of the single precision are almost twice the double precision, indicating the performance
is determined by the data transfer between the device memory and cores. While the performance
of the Wilson matrix multiplication is comparable for NVIDIA Tesla K40 and AMD GPU, the
performance of the solver shows amplified differences. This is presumably caused by inefficient
implementation of the reduction in the inner-product. At present, the BLAS methods are imple-
mented in the Bridge++ code. We apply two step reduction, first reducing to a coarse-grained array
and then taking a full reduction. These reductions are found to affect the performance significantly.
In the case of Tesla M2090 for double precision, in addition to adjusting the run-time parameters,
we slightly modify the code so as to use a local memory instead of registers for a part of vari-
ables. This improves the performance of the Wilson matrix multiplication about 70 %, while still
much less than half the number for single precision. It may imply inefficient register assignment
in the original code for this architecture. Further tuning of the code and architecture dependent
optimization are underway.

Performance with OpenACC In Table I, we also quote the present performance of OpenACC
implementation of Bridge++. The fermion multiplication is less efficient than the OpenCL version,

!In Ref. [B] we quoted incorrect performance data for Tesla K40, caused by that the position of time counter was
changed by compiler optimization.

Lattice QCD code Bridge++ on arithmetic accelerators S. Motoki

OpenCL OpenACC
operation float double float double
NVIDIA Tesla K40 (Kepler):

Wilson mult 232 GFlops 121 GFlops 196 GFlops 39.1 GFlops
CG solver 160 GFlops 86.0 GFlops 123.7 GFlops 35.0 GFlops
NVIDIA Tesla M2090 (Fermi):

Wilson mult 154 GFlops 39.2 GFlops 149 GFlops 22.9 GFlops
CG solver 107 GFlops 33.7 GFlops 84.3 GFlops 21.1 GFlops
AMD FirePro W9100:

Wilson mult 179 GFlops 110 GFlops 123 GFlops 19.0 GFlops
CG solver 120 GFlops 79.5 GFlops 130 GFlops 20.6 GFlops

Table 2: Performance with OpenCL and OpenACC for Wilson fermion matrix mult and CG solver on a
16 x 32 lattice.

in particular for the double precision case. The latter may be due to non-optimal assignment of vari-
ables to registers. By reducing the number of local variables, the performance indeed approaches
the half the values of the float cases. To achieve a higher performance, a more careful tuning seems
to be in order.

4. Discussion and conclusion

We reported our implementation of OpenCL and OpenACC into Bridge++, and discussed
advantages and disadvantages of these frameworks.

We found that OpenCL enables us to control devices in detail, but requires complicated setup
procedures, such as preparation of contexts, command queues, as well as a compilation of ker-
nel codes. These procedures can be, however, encapsulated in a management class. While C++
template programming is not available in the current OpenCL C language, on-line compiler can
achieve polymorphism. In tuning the code, it is also convenient that the memory type of a variable
can be specified explicitly.

In contrast to the case of OpenCL, OpenACC is much easier to be introduced. However, we
had to spend much more time to tune the code with OpenACC, because of its indirect control
of devices by a compiler. The rapid improvement of the OpenACC compiler may dissolve this
problem. We also note that the present OpenACC compiler is not sufficiently mature in processing
the C++ template syntax, which required us involved coding to enable static polymorphism.

Both frameworks allow us to offload time-consuming computational tasks, keeping the object-
oriented code structure. The interfaces implemented in Bridge++ are sufficiently simple. Although
the performance is better with OpenCL at present, that with OpenACC in single precision is also
acceptable. For the double precision case with OpenACC, more tuning is required. Further tuning
is ongoing, taking account of each device architecture.

Acknowledgment

The code was developed and tested on HA-PACS at the University of Tsukuba under a sup-

Lattice QCD code Bridge++ on arithmetic accelerators S. Motoki

port for its Interdisciplinary Computational Science Program, and workstations installed at KEK
Computing Research Center. This project is supported by H20 Grant-in-Aid for Scientific Re-
search on Innovative Areas ‘Research on the Emergence of Hierarchical Structure of Matter by
Bridging Particle, Nuclear and Astrophysics in Computational Science’, Joint Institute for Com-
putational Fundamental Science and HPCI Strategic Program Field 5 ‘The origin of matter and the
universe’. This work is supported in part by the Grand-in-Aid for Scientific Research of the Japan
(No0s.20105005, 25400284, 15K05041, 15K05068).

References
[1] G.I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi and K. K. Szabo, Comput. Phys. Commun.
177, 631 (2007) doi:10.1016/j.cpc.2007.06.005 [hep-1at/0611022].
[2] M. A. Clark, PoS LAT 2009, 003 (2009) [arXiv:0912.2268 [hep-lat]].
[3] Bridge++ website, http://bridge.kek.jp/Lattice—-code/.
[4] S. Ueda et al., PoS LATTICE 2013, 412 (2014); J. Phys. Conf. Ser. 523, 012046 (2014).
[5] S.Ueda et al., PoS LATTICE 2014, 036 (2015).

[6] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun. 181, 1517
(2010) doi:10.1016/j.cpc.2010.05.002 [arXiv:0911.3191 [hep-lat]].

[71 M. Bach, V. Lindenstruth, O. Philipsen and C. Pinke, Comput. Phys. Commun. 184, 2042 (2013)
doi:10.1016/j.cpc.2013.03.020 [arXiv:1209.5942 [hep-lat]].

[8] V. Demchik and N. Kolomoyets, arXiv:1310.7087 [hep-lat].
[9]1 M. Di Dipierro, PoS LATTICE 2013, 043 (2014).
[10] S. Motoki et al., Procedia Computer Science 29, 1701-1710 (2014).

[11] H. Matsufuru et al. (Bridge++ Project), Proc. Comp. Sci. 51, 1313 (2015)
[doi:10.1016/j.procs.2015.05.316].

[12] P. Majumdar, PoS LATTICE 2013, 031 (2014) [arXiv:1311.2719 [hep-lat]].
[13] Y. Osaki and K. I. Ishikawa, PoS LATTICE 2010, 036 (2010) [arXiv:1011.3318 [hep-lat]].

