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There was a long time disagreement on semimetal-insulator phase transition in graphene between
theoretical calculations and experimental data. The first results allowing to resolve this issue
were obtained in the papers [Phys. Rev. Lett. 111, 56801 (2013)] and [Phys. Rev. B 89, 195429
(2014)] where antiferromagnetic order parameter was studied taking into account screening of
Coulomb potential by σ -electrons of carbon atoms. Authors found that the appearance of antifer-
romagnetic (AFM) order is shifted into unphysical region of interaction strength. The appearance
of AFM order parameter should be accompanied by the rapid fall of conductivity. Therefore
the calculations of graphene conductivity taking into account screening of Coulomb potential
by σ -electrons should be performed in order to demonstrate explicitly the phase transition to
insulating state. We performed Monte-Carlo simulations of graphene tight-biding model with
realistic electron-electron interaction and calculated the dependence of conductivity on dielec-
tric permittivity of substrate. According to our calculations suspended graphene has conductivity
σ = (0.325±0.003)e2/h̄ which is very close to experimental value σ = (1.01±0.04)e2/4h̄. The
phase transition in conductivity is also shifted into unphysical region ε<1 due to influence of
σ -electrons.
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1. Introduction

Graphene is two-dimensional material with hexagonal lattice [1]. At low energies electrons in
graphene can be described by effective field theory of Dirac massless fermions with Fermi velocity
vF = c/300 [2]. Due to smallness of Fermi velocity electron-electron interaction in graphene can be
described by instantaneous Coulomb potential with good precision. When graphene sheet is located
on a substrate with dielectric permittivity ε the interaction is decreased in 2

1+ε
times. Thereby the

strength of Coulomb potential can be changed through varying ε . Consequently one of the most
interesting questions about graphene is whether the interaction at some ε is strong enough to cause
the semimetal - insulator phase transition.

In papers [3, 4] the chiral condensate in graphene effective field theory was studied with
Monte-Carlo calculations and it has been shown that semimetal - insulator phase transition takes
place at critical epsilon εc ≈ 4. This result was confirmed by subsequent paper [5], where first-
principle Monte - Carlo calculations of graphene tight -binding model with lattice Coulomb po-
tential were conducted. In this work graphene conductivity was also calculated: in region where
ε > εc conductivity acquires constant value σ ' 0.32 e2/h̄ and tends to zero when ε < εc. In con-
trast, experiments [6, 7, 8] reported the absence of the phase transition. Even suspended graphene
with the strongest interaction is a conductor with conductivity σ = (1.01±0.04)e2/4h̄.

This disagreement between theory and experiments had not been understood until the work [9]
was published. Authors of this work performed direct Hybrid Monte-Carlo simulations of graphene
tight-biding model taking into account screening of Coulomb potential by σ -electrons of carbon
atoms. It was demonstrated that fermionic condensate (antiferromagnetic order parameter) appears
only when dielectric permittivity ε < 0.7 thus the phase transition is shifted into unphysical re-
gion. Unfortunately, calculation of conductivity was not carried out and question about theoretical
value of suspended graphene conductivity still remains open. In order to close this gap we studied
whether effects of screening by σ -electrons of carbon atoms can change graphene conductivity.

2. Model

Full Hamiltonian consists of two terms Ĥ = Ĥtb + Ĥint . The first term is tight-binding Hamil-
tonian. It describes free electrons in graphene:

Ĥtb =−κ ∑
〈x,y〉

(â†
x ây + b̂†

x b̂y + c.c.)±∑
x

m(â†
x ây + b̂†

x b̂y). (2.1)

where κ = 2.8 eV is the hopping parameter, â†
x (âx) and b̂†

x (b̂x) - creation (annihilation) operator
for electron and hole respectively. The sum ∑〈x,y〉 is taken over all pairs of nearest-neighbors x
and y. Also we introduced mass term to eliminate zero mode of fermionic operator (see below).
The mass term is unphysical thus we conducted all calculations with small masses and performed
extrapolation to zero mass.

The interaction Hamiltonian Ĥint is:

Ĥint =
1
2 ∑

x,y
q̂xVxyq̂y, (2.2)
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where q̂x = â†
x âx− b̂†

x b̂x is charge operator and Vxy are matrix elements of inter-electron interaction
potential. As it has been shown in [9] the Coulomb potential is not sufficient to cover physics of
graphene thus we used more complicated interaction matrix. At small distances it is important to
take into account screening of Coulomb potential by σ -electrons. Corresponding matrix elements
Vxy were calculated in [10]. At the same time at large distance the effect of screening is negligible
and ordinary Coulomb potential can be safely used for the calculation of Vxy. For more details one
can refer to the paper [9].

Using analogy with the lattice QCD techniques [11, 12] we constructed the partition func-
tion Z = Tre−β Ĥ (β = 1/T is inverse temperature) by integrating out fermionic fields. Hubbard-
Stratonovich transformation is used to get rid of four-fermionic terms in the interaction Hamiltonian
[13]. After some algebra we obtained the partition function in the form appropriate for Monte-Carlo
simulations:

Z =
∫

Dφ e−S[φx,t ]|detM[φx,t ]|2, (2.3)

where S[φx,t ] =
Nt−1
∑

t=0
∑
xy

φx,tVxyφy,t describes effects of interaction and M[φx,t ] is fermionic matrix:

∑
x,y,t,t ′

(
ψ
∗
x,tMx,y,t,t ′ψy,t ′

)
=

Nt−1

∑
t=0

[
∑
x

ψ
∗
x,2t(ψx,2t −ψx,2t+1)−δκ ∑

〈x,y〉
(ψ∗x,2tψy,2t+1 +ψ

∗
y,2tψx,2t+1)

+∑
x

ψ
∗
x,2t+1(ψx,2t+1− e−iδφx,t ψx,2t+2)±δm∑

x
ψ
∗
x,2tψx,2t+1

]
.

The integrand can be interpreted as Boltzmann weight factor hence we can generate configurations
of Hubbard field φx,t with this probability distribution and calculate physical observable as average
over generated configurations. It worth to note that squared determinant is not coincidence. It
appears due to particle-antiparticle symmetry in graphene. Thus we don’t have any sign problem
and can use Hybrid Monte-Carlo algorithm to generate Hubbard field configurations. Some details
can be found in [9, 5, 13].

Current-current correlator is defined in usual way. Its calculation is performed according to
lattice QCD techniques [11, 12]. The current-current correlator can be written in the following
form in terms of matrix elements of fermionic operator:

G(τ) =−∑
b,c

2~eb~ec

3
√

3a2NxNy
〈ReTr

(
jbM−1(0,τ) jcM−1(τ,0)

(
)〉. (2.4)

Here~eb (~ec) are unit vectors in link directions b(c) of graphene hexagonal lattice, a = 0.142 nm is
graphene lattice spacing, Nx and Ny are the lattice sizes and ja is the matrix of one-particle current
operator. Here we wrote only the connected term. As it has been shown for Coulomb potential
in [5] all disconnected contributions in current-current correlator are much smaller than connected
ones. Their relative statistical errors are also much larger so one needs substantially larger amount
of supercomputer time to calculate disconnected contributions with good precision. In our case
they are even smaller due to smallness of interaction potential in comparison with Coulomb one.
Therefore we postponed calculation of disconnected contributions to future work and studied only
connected term of current-current correlator.
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Figure 1: Dependence of graphene conductivity on dielectric permittivity of substrate. Calculation
was done on lattice 18x18x20 with T=0.5 eV using 80 statistically independent configurations for
each data point.

3. Results and conclusions

Conductivity can be extracted from current-current correlator with the help of Green-Kubo re-
lation [14, 15]. Commonly used method to invert Green-Kubo relation is maximum entropy method
(MEM). Unfortunately it’s hard to extract graphene conductivity using MEM in physically inter-
esting region of temperatures even in the free theory (see [5]). So we followed [5] and calculated
conductivity smeared over small frequencies:

σ̄ = N −1
∞∫

0

dw
2π

2w
sinh

( w
2T

(
)

σ (w() =
1

π T 2 G(β/2(). (3.1)

We performed calculations on lattices Nx = Ny = 18, Nt = 20, δ = 0.1 eV−1 with temperature
T = 0.5 eV and several values of ε . Several values of mass in the region m = 0.1− 0.5 eV were
used. All data were extrapolated to zero mass using quadratic polynomial.

It is clearly seen from FIG. 1 that critical value εc ≈ 0.7 separates semimetal and insulator
phases: conductivity tends to constant value for ε > εc and decreases when ε < εc. The calculated
value of conductivity for suspended graphene (ε = 1) is σ = 0.325± 0.003 (in SI units e2/h̄).
Interestingly, it doesn’t depend on the interaction strength above the critical value of ε . Calculated
conductivity slightly overestimates its experimental value. We can explain it by the fact that we
deal with conductivity smeared over small frequencies. Even in free theory it is lightly higher than
the exact value of DC conductivity (see [5]).

Finally, we conclude that our calculations of conductivity are in full agreement with previous
studies of AFM order parameter [9]. The screening of Coulomb potential at short distance shifts
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the transition in conductivity at the same critical εc ≈ 0.7 which is in unphysical region. Our results
confirm that below critical ε graphene is in insulating phase. Very interestingly, the conductivity
is quite stable in semimetal phase up to interaction strength which is very close to the critical one.
This result confirms theoretical studies of conductivity renormalization in graphene where exact
cancellation of all perturbative corrections was reported [16].
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