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1. Introduction

Gauge theories exhibit a variety of phases depending on the dimensionality of spacetime. The
critical dimensionality of Lorentz-invariant gauge theories is 3 + 1, at which the coupling is clas-
sically marginal and quantum effects drive non-Abelian gauge theories with not-too-many fermion
flavors to a strong-coupling confining phase with chiral symmetry breaking, whereas Abelian gauge
theories hit a Landau pole at high energy and lacks a sensible definition at least within a perturba-
tion theory. Gauge theories in lower dimensions are asymptotically free for any number of flavors
and are relevant to strongly correlated lower-dimensional electronic materials. By contrast, at least
within naive power counting, gauge theories living in higher than 4-dimensions lose renormaliz-
ability and seem to be ill-defined in the ultraviolet. However, some theoretical studies on physics
beyond the Standard Model prompt considering gauge theories in higher dimensions, e.g. to solve
the hierarchy problem in particle physics [1]. Given the lack of a continuum limit in the pertur-
bative regime, one has to either conclude that a Yang-Mills theory in higher dimensions serves
only as an infrared effective description of a more fundamental theory such as string theory, or,
try to find their UV completion within quantum field theory. The latter calls for an intrinsically
nonperturbative approach.

A powerful way to address nonperturbative problems in gauge theories is a lattice gauge theory
pioneered by Wilson [2], in which one puts a theory on a discrete lattice keeping exact gauge sym-
metry. This proved to be a quite powerful numerical tool to elucidate the strong-coupling physics
of Yang-Mills theory and QCD. Of course our ultimate interest is in physics in the continuum,
so any lattice simulations of QCD have to be accompanied by a procedure of extrapolation to the
continuum limit, which is quite well understood in QCD; it is the large-f limit that corresponds
to the domain of infinitely long correlation length in lattice units. By contrast, the existence of
a continuum limit is far from trivial in unconventional theories. In the case of five-dimensional
Yang-Mills theories on a lattice, the phase diagram consists of a weakly coupled Coulomb phase
and a strongly coupled confining phase, which are separated by a first-order phase transition [3];
so far the existence of a continuum limit is not confirmed yet. Although the so-called layer phase
proposed by Fu and Nielsen [4] has been actively investigated with lattice simulations, the issue of
continuum limit is still under a debate [5, 6, 7].

There is however a class of theories that enjoy Lifshitz-type scale invariance instead of Lorentz
invariance. The original motivation for them came from anisotropic critical points in condensed
matter systems, where the critical scaling exponents are spatially anisotropic [8]. In elementary
particle physics, the idea of exploiting anisotropic scaling of space and time as a way of amelio-
rating UV divergences was explored by Hofava for quantum gravity [9] and by many authors for
scalar and gauge theories, as reviewed in [10]. Although this deformed class of gauge theories
seems to provide an intriguing UV completion, most of the analyses so far has been done in the
continuum within a perturbative framework.

In this work, we report on a first nonperturbative lattice regularization of higher-dimensional
non-Abelian Lifshitz-type gauge theories [11]. Besides a theoretical proposal of the formulation,
we also performed a lattice Monte Carlo simulation based on our lattice action with the gauge
group SU(3) and found a smooth crossover from strong to weak coupling. This opens up a novel
arena to test ideas related to the beyond-Standard-Model physics and to seek for new dynamics of
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Figure 1: Twisted Wilson loop 7;;(x) that starts and ends at a point x on the lattice. The variables iand j are
unit vectors in x’ and x/ directions, respectively. Note that T; ; # Tj;. Figure taken from [11].

gauge fields unseen in the conventional setup in 4 dimensions.

2. Lattice formulation

We consider a Lifshitz-type gauge theory in (D + 1)-dimensional Euclidean spacetime studied
by Hotava [12]. The action is given by

1 1 1
=3 / dxodPx thrFozi+gztr(D,-Ek)(D iFi) | 2.1)

where Fyy = dyAy — Ay +i[Ay,Av] and DiFjx = 0iF +i[Ai, Fy) (i, ),k € {1,2,...,D}) with
Ay = AjT? the gauge field in the Lie algebra of SU(N). While the temporal part of the action
is second order in derivatives, the spatial part is fourth order, hence this action has the dynamical
critical exponent z = 2. The absence of the usual spatial kinetic term trFé at first sight appears
to be vulnerable to quantum corrections, but it has been shown in the stochastic quantization of
Yang-Mills theory [13, 14] that tr F; % is not engendered under renormalization. By the same token,
other terms of the same scaling d1mens1on (e.g., tr(F?)) are not generated either. This simplifying
property makes (2.1) an attractive testbed for general Lifshitz-type gauge theories.

The two couplings e and g are independent at the classical level. Their 8 functions at one
loop indicate that this theory is asymptotically free for D < 4 [12]. For D = 4, a dynamical scale
is expected to emerge in IR due to dimensional transmutation, much like in QCD. This attractive
conjecture due to Hofava cannot be tested in a perturbative framework, however.

Now we proceed to a lattice regularization of (2.1). It is crucial to preserve gauge invariance
at finite lattice spacing. We propose

B
Slat = 2ZiIZZRetr [1— Poi(x —i];
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The temporal part of Si, uses the standard Wilson’s 1 x 1 plaquette Py, lying in the (x°, x)-plane,
whereas T;; in the spatial part is a twisted 2 x 1 Wilson loop in the (x',x/)-plane, as shown in
Fig. 1. The order of multiplication in []7;; is arbitrary because it only affects irrelevant terms in
the continuum limit. The lattice couplings (ej,t, g1at) are defined through

2N 2N
Pe=—5 and fy=—. @.3)
lat 8lat
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Figure 2: Action density s = (Siy) /Niae With isotropic couplings B, = B, =B ona 6 lattice (red points). For
comparison, simulation results for isotropic Yang-Mills theory on the same lattice is plotted (blue points).
Dashed lines represent the leading order of weak and strong coupling expansions, respectively. Figure taken
from [11].

It can be straightforwardly checked that Sy, recovers S in (2.1) at least in the classical continuum
limit. On the lattice, we need to control the dimensionless couplings fB. . to find a second-order
phase transition where the correlation length measured in lattice units tends to infinity. As shown
in [12], the physical couplings (e, g) flow to zero in UV (asymptotic freedom), which motivates us
to expect that the continuum limit of the lattice theory (2.2) may be defined by the weak-coupling
limit ey, g1a — 0. We check this anticipation in full numerical simulations in the next section.

3. Monte Carlo simulation

We simulated the lattice theory (2.2) with standard Monte Carlo techniques. We studied the
N = 3 theory on lattices of size Njy = 6° and 10°. In Fig. 2 the action density for isotropic couplings
is plotted. The transition from strong to weak coupling appears to be a smooth crossover. At f < 1
and > 1 one can estimate the behavior of the action density analytically and our numerical results
are in full accord with those limits. For the purpose of comparison we have also simulated the
conventional Yang-Mills theory with Wilson plaquette action on the same lattice, as plotted in blue
in Fig. 2. There is a sharp drop at 3 ~ 4.5, which is a known bulk transition from a confining phase
at small B to a deconfined Coulomb phase at large 8 [15]. This is consistent with perturbative
non-renormalizability of the Yang-Mills theory in five dimensions. (A similar result was obtained
for the gauge group SU(2) long time ago [3]; for a more recent study, see [16].) Confirmation of
this dramatic disparity between the two theories is the main result of this work.

We also performed simulations with anisotropic couplings (8, # B,). The action density,
plotted in Fig. 3, varies smoothly with the couplings and shows no indication of a phase transition.

Next we measured temporal Wilson loops Wy, of edge lengths ¢ and x to extract the color-
singlet potential between infinitely heavy quarks

Vix)= —limllog (trWo;(2,x)) . 3.1

t—oo f
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Figure 3: Action density on a 6° lattice for various f3, and Be. Figure taken from [11].

In actual simulations, the extrapolation to t = o is replaced with a large but finite ¢. The numerical
result for the potential is presented in Fig. 4. The data points indicate a linear confining potential
between heavy quarks in this theory. Due to limited volume, we could not extract the potential
at very short and long distances. In perturbation theory, one expects a one-gluon-exchange poten-
tial of the form V (x) ~ [dPp exp(—ipx)/p? ~ 1/x* at small x. Confirmation of this behavior is
postponed to future work.
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Figure 4: Color-singlet potential V (x) measured on a 10° lattice with B, = B, = 9. The axes are in lattice
units. Figure taken from [11].

We have also measured spatial Wilson loops W;; and spatial plaquettes F;;. Their statistical
averages were found to be zero within errors. This is natural, considering that the spatial kinetic
term for gluons tr Fg should not be generated by quantum corrections.

4. Conclusions

In this work we reported a nonperturbative lattice regularization of Lifshitz-type gauge theories
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with anisotropic scale invariance. The results of first numerical simulation of our lattice theory in
5 dimensions reported here suggests that the continuum limit can be defined in the weak-coupling
limit, in a way quite analogous to the standard lattice Yang-Mills theory in 4 dimensions. We
measured the heavy-quark potential and found that quark confinement takes place in our lattice
theory even at weak coupling. All these findings are theoretically interesting as a new pathway to
extend the realm of cutoff-free gauge theories into higher dimensions. While our first simulation
was limited to a relatively small volume and a restricted coupling parameter region, there seems to
be no fundamental difficulty in performing more thorough simulations based on existing techniques
in lattice QCD.

There are numerous questions left unanswered in this pilot study. Can we extend the lattice for-
mulation to the case of dynamical exponents z > 2?7 What is the mechanism of quark confinement
in 5 dimensions? Can we introduce quarks into the theory without spoiling good renormalization
properties? If possible, then could there be a spontaneous flavor symmetry breaking of quarks?
Is there any applications to the theories of quantum criticality with anisotropic scale invariance
in condensed matter systems [17, 18]? What can be learned about the Standard Model from this
theory? These issues should be investigated elsewhere.
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