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The gradient flow in simple field theories
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The gradient flow is a valuable tool for the lattice community, with applications from scale-setting
to implementing chiral fermions. Here I focus on the gradient flow as a means to suppress power-
divergent mixing. Power-divergent mixing stems from the hypercubic symmetry of the lattice
regulator and is a particular difficulty for calculations of, for example, high moments of parton
distribution functions. The gradient flow removes power-divergent mixing on the lattice, provided
the flow time is kept fixed in physical units, at the expense of introducing a new physical scale
in the continuum. One approach to dealing with this new scale is the smeared operator product
expansion, a formalism that systematically connects nonperturbative calculations of flowed oper-
ators to continuum physics. I study the role of the gradient flow in suppressing power-divergent
mixing and present the first nonperturbative study in scalar field theory.
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1. Introduction

The curse of power-divergent mixing afflicts a range of lattice calculations, but the prototypical
example occurs in calculations of matrix elements of twist-2 operators, where twist is the dimension
minus the spin of the operator. These matrix elements arise, for example, in lattice determinations
of moments of parton distribution functions, which capture the distribution of a fast-moving nu-
cleon’s longitudinal momentum amongst its constituents. For twist-2 operators, power-divergent
mixing stems from the hypercubic symmetry of the lattice regulator.

In general, the symmetry restrictions of the finite hypercubic group are less stringent than those
imposed by the orthogonal group of continuous Euclidean spacetime and allow for more compli-
cated radiative mixing. Operators of definite angular momentum, for example, do not mix in the
continuum. The lattice regulator breaks rotational symmetry, however, and angular momentum is
no longer a good quantum number in a discretised spacetime. Lattice operators that correspond to
a state with definite angular momentum in the continuum may therefore mix. For operators of dif-
ferent mass dimension, this mixing generates contributions that diverge as an inverse power of the
lattice spacing in the continuum limit: the problem of power-divergent mixing. Such contributions
must be removed to extract meaningful continuum physics.

In [1], we introduced a modified operator product expansion–the smeared operator product
expansion–to remove power-divergent mixing via the gradient flow. The gradient flow, a gauge-
invariant form of smearing with particularly useful renormalisation properties [2], drives the origi-
nal degrees of freedom to the stationary points of the action and corresponds to a continuous stout-
smearing procedure [3]. Smearing has long been used in lattice calculations to reduce discretisation
effects and improve the continuum limit of lattice data. There is a history, too, of modifying the
operator product expansion on the lattice to account for power-divergent mixing [4], although these
techniques have not been widely adopted. Here I discuss the use of the gradient flow to remove
power-divergent mixing and consider some examples in scalar field theory.

2. The smeared operator product expansion

The operator product expansion (OPE) for a non-local operator in scalar field theory is widely-
known (see, for example, [5]), so here I just introduce some necessary notation. I write the OPE
for a non-local operator, Q(x), as

Q(x) x→0∼ ∑
k

ck(x,µ)O
(k)
R (0,µ). (2.1)

The ck(x,µ) are perturbative Wilson coefficients that capture the short-distance physics associated
with the renormalised local operator O

(k)
R (0,µ), where µ is the renormalisation scale. This operator

is a polynomial in the scalar field and its derivatives, and the operator’s free-field mass dimension
governs the leading spacetime dependence of the Wilson coefficients. Radiative corrections gener-
ate sub-leading dependence on the spacetime separation. The Wilson coefficients are functions of
the spacetime separation x; the (renormalised) mass m; and the renormalisation scale, µ . Here, one
should interpret this equality in the weak sense of holding between matrix elements.
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In [1] we proposed a new expansion in terms of smeared operators, the smeared OPE:

Q(x) x→0∼ ∑
k

dk(τ,x,µ)S
(k)

R (τ,0,µ). (2.2)

The smeared coefficients dk(τ,x,µ) are now functions of three scales: the smearing scale, τ; the
spacetime separation, x; and the renormalisation scale, µ . The smeared operator, SR(τ,0), has the
same free-field mass dimension as its local counterpart. Thus, the smeared coefficients exhibit the
same leading spacetime dependence as that of the local Wilson coefficients.

Although we referred to these operators as generically “smeared”, one should recognise that
we had in mind a particular form of smearing: the gradient flow [2, 6]. The gradient flow is a
classical evolution of the original degrees of freedom towards the stationary points of the action in
a new dimension, the flow time, with the particularly useful property that renormalised correlation
functions remain renormalised at non-zero flow time (up to a fermion renormalisation) [2].

Working with scalar field theory in two dimensions, defined by the action

Sφ [φ ] =
1
2

∫
d2x
[
(∂νφ)2 +m2

φ φ
2 +

λφ

2
φ

4
]
, (2.3)

the flow time evolution takes a particularly simple form (see [7] for a rather different application of
the gradient flow that also takes advantage of its simplicity):

∂ρ(τ,x)
∂τ

= ∂
2
ρ(τ,x). (2.4)

Here ∂ 2 is the Euclidean Laplacian operator. Imposing the Dirichlet boundary condition ρ(0,x) =
φ(x), one can solve this equation exactly. The solution is

ρ(τ,x) =
1

4πτ

∫
d2ye−(x−y)2/4τ

φ2(y), (2.5)

which demonstrates explicitly the “smearing” effect of the gradient flow: the flow time exponen-
tially damps ultraviolet fluctuations. The root-mean-square smearing length, which is srms = 2

√
τ

in two dimensions, characterises the corresponding smearing radius.
The flow evolution equation, Equation (2.4), is straightforward and manifestly corresponds to

Gaussian-smearing of the scalar degrees of freedom. In principle, however, we are free to choose
the precise form of the flow time evolution equation (provided it drives the fields to configurations
corresponding to minima of the action), and we could incorporate interactions in the flow time
evolution, as is done in QCD and the nonlinear sigma model. This choice would, unfortunately,
remove the renormalisation property of the gradient flow that proves so useful: renormalised corre-
lation functions would no longer be guaranteed to remain finite at non-zero flow time. Ultimately
this result stems from the internal symmetries of QCD and the nonlinear sigma model that have no
analogue in scalar φ 4 theory1. In pure Yang-Mills theory and the nonlinear sigma model, it is gauge
invariance, manifest through appropriate BRST symmetries, that ensures no new counterterms can
be generated by the gradient flow [2].

1I am indebted to M. Dalla Brida and R. Brower for discussions regarding this point.
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3. Nonperturbative scalar field theory

I study two-dimensional φ 4 theory on small (N = L/a = 16,32) to medium-sized square lat-
tices (N = 128,256). The lattice action is

Slatt
φ [φ ] = ∑

n

[
−

2

∑
i=1

φ(n+ i)φ(n)+
(

2+
m2

0
2

)
φ

2(n)+
λ

4
φ

4(n)

]
, (3.1)

where the sum runs over all lattice sites n in the lattice volume N2 = (L/a)2 and m0 = amφ is
the dimensionless bare mass. The lattice coupling constant λ = a2λφ is also dimensionless. In the
infinite volume limit, this theory has a continuous phase transition between the symmetric phase, in
which 〈φ〉= 0, and a broken phase, in which 〈φ〉 6= 0, explored in, for example, [8]. The continuum
limit corresponds to the origin in the bare lattice mass-coupling plane and is parameterised by a
single dimensionless number.

In two dimensions, φ 4 theory is super-renormalisable [8]; there is a single divergent tadpole
diagram, which is given by

Alatt
m2

0
=

1
N2

N−1

∑
k=0

1
4sin2(πk/N)+m2

N→∞
=

mfixed

∫
∞

0
due−u(4−m2)[I0(2u)]2, (3.2)

where the second equality holds in the infinite volume limit, I0(z) is the modified Bessel function
of the first kind, and m is the renormalised (lattice) mass. Perturbatively, the renormalisation con-
dition δm2 = 3λAm2 removes all ultraviolet divergences. In principle one could choose to define
a renormalised coupling, either through the four-point function or with a finite volume scheme
based on the gradient flow, analogous to that proposed in [9], but this is unnecessary, because the
renormalised coupling differs by a finite shift from the bare coupling.

Numerical tests To combat critical slowing down, I use a Monte Carlo procedure that incorpo-
rated five Metropolis update steps followed by an embedded Wolff cluster update step [10] (there
also exist microcanonical and multigrid methods for this system [11]). I thermalised the lattices
for at least 104 such “sweeps” and took measurements every 100 sweeps to reduce autocorrelations
(at the critical mass, for example, I found integrated autocorrelation times up to approximately 80
update steps for 〈φ 2〉, in line with [8]).

I plot the integrated autocorrelation times τint, calculated using the Gamma analysis of [12],
for 〈φ 2〉 with simple Metropolis updating in the left-hand panels of Figure 1 and for Metropolis
steps combined with a embedded cluster update step in the right-hand panels of the same figure
(for details, see the corresponding caption). In general, including the cluster update improves the
integrated autocorrelation time by a factor of two to three. The increased integrated autocorrelation
time at m2

0 =−0.72 indicates the critical slowing down associated with a phase transition.
I illustrate the existence of the phase transition, which occurs at m2

0 =−0.72 for λ = 0.5 and
at m2

0 = −1.27 for λ = 1.0, in Figure 2. In the left-hand panels, I plot the distributions of the
values of φ from a single lattice at two points in the mass-coupling parameter space. These points
correspond to the symmetric (far left) and broken (centre left) phases in the infinite volume limit.
The histograms demonstrate that, as the lattice size increases, the distribution of φ values collapses
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Figure 1: The autocorrelation time for 〈φ 2〉, as a function of the summation window of the Gamma analysis
of [12]. Simple Metropolis updating at: (far left) m2

0 =−0.68 and (centre left) m2
0 =−0.72. Metropolis al-

gorithm with an embedded cluster update step at: (centre right) m2
0 =−0.68 and (far right) m2

0 =−0.72. All
plots show data for N = 64 and λ = 0.5. The vertical red lines represent the value of the summation window
automatically chosen by the Gamma analysis procedure and the horizontal red lines give the corresponding
integrated autocorrelation time.

Figure 2: Testing the two phases: (Left panels) Histograms representing the distribution of φ values on a
single lattice in two regions corresponding to (far left) the symmetric phase (am2

0 = −0.64, λ = 0.5) and
(centre left) the broken phase (am2

0 =−0.72, λ = 0.5), in the infinite volume limit. (Right panels) The Binder
cumulant, Bc, as a function of (centre right) the bare mass, m2

0, at λ = 0.5 and for different lattice volumes,
and (far right) as a function of lattice size, at fixed bare mass and coupling constant. The horizontal grey
lines correspond to the infinite volume values in the symmetric and broken phases: Bc = 0 and Bc = 2/3,
respectively. The vertical red dashed line in the left-hand plot corresponds to the critical mass. Uncertainties
are smaller than the size of the data point markers. Data from 104 measurements.

to a Gaussian distribution centred on zero for m2
0 =−0.64, corresponding to the symmetric phase,

and a Gaussian centred around 〈φ〉 6= 0 for m2
0 =−0.72, corresponding to the broken phase.

As a further test, I studied the fourth-order Binder cumulant, Bc, an order parameter for the
phase transition from the symmetric to the broken phase. This cumulant is defined as Bc = 1−
φ 4/3(φ 2)2, where φ is the volume-averaged value of φ on a single configuration [13]. In the
infinite volume limit, Bc = 0 in the symmetric phase and Bc = 2/3 in the broken phase. In the
right-hand panels of Figure 2 I plot: (centre right) the Binder cumulant as a function of the bare
lattice mass m2

0, at fixed coupling constant λ = 0.5 and for different lattice sizes; and (far right)
as a function of lattice size for three different bare lattice masses at fixed coupling λ = 1.0. These
plots demonstrate that, in the infinite volume limit, the Binder cumulant tends to the correct value
in both phases.

Mixing and the gradient flow Let us consider the matrix element
〈
Ω|φ 2(0) ·φ(0)∂ 2φ(0)|Ω

〉
in

perturbation theory [1]. In the continuum this matrix element vanishes. On the lattice, however, the
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corresponding matrix element in four dimensions diverges with the inverse lattice spacing squared,
signaling the appearance of power-divergent mixing. In the continuum limit, keeping the flow
time τ fixed in physical units, this matrix element tends to a constant, signaling the suppression of
power-divergent mixing for smeared degrees of freedom. Note, however, that we have not removed
mixing entirely, but only suppressed the problematic power-divergent mixing. In two dimensions,
the lattice matrix element diverges only logarithmically with the cutoff, but the principle remains
the same: fixing the flow time removes this divergent behaviour.

We see this in Figure 3. In the left-hand panel I plot the vacuum expectation value of φ 2(0) ·
φ(0)∇2φ(0) in the symmetric phase, as a function of the bare mass m2

0 (expressed as a ratio to
the critical mass, m2

crit). The true continuum limit corresponds to the origin in the bare mass-
coupling plane, but for our purposes we can consider instead the approach to the critical point at
fixed coupling. I extrapolate to the infinite volume limit with a polynomial fit to 1/N, including
terms up to 1/N3, for lattices from N = 16 to N = 256. The magenta band corresponds to a fit to
a logarithmic function of (1−m2

0/m2
crit) and incorporates fitting errors only. This plot shows the

logarithmic divergence expected on perturbative grounds.
In the right-hand panel I plot the vacuum matrix element of ρ2(τ,0) · ρ(τ,0)∇2ρ(τ,0) as a

function of the bare mass, at fixed flow time (for lattices up to N = 128). I extrapolate to the
infinite volume limit with a polynomial, as before, and fit these infinite volume results to a constant.
Including terms linear or quadratic in the flow time has no affect on the central value of the fit,
within errors.

These two plots demonstrate the power of the gradient flow: the smeared matrix elements no
longer diverge in the continuum limit, exactly in line with perturbative expectations.

Figure 3: (Left) The matrix element
〈
Ω|φ 2(0) ·φ(0)∇2φ(0)|Ω

〉
, as a function of the bare mass, expressed

as a ratio of the critical mass, at fixed coupling. The magenta band shows a fit to a logarithmic function
of (1−m2

0/m2
crit) for the infinite volume results, obtained from a polynomial fit in 1/N. (Right) The same

matrix element, but at non-zero flow time. Here the magenta band is a fit to a constant. Including terms
polynomial in the flow time does not change the final fit, within errors.

4. Conclusion

Power-divergent mixing complicates the continuum limit of lattice matrix elements for a wide
range of calculations. The gradient flow provides a tool to remove power-divergent mixing from
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lattice calculations. Here I demonstrate this principle in the simple toy model of scalar field theory,
with quartic interactions, in two dimensions. By keeping the flow time fixed in physical units in
the continuum limit, power-divergent coefficients are rendered finite, at the expense of introducing
a new physical scale into the system: the smearing radius.

One approach to dealing with this new scale is the smeared operator product expansion (sOPE),
in which nonlocal operators are expanded in a basis of locally-smeared operators. The correspond-
ing perturbative coefficients are then also functions of the smearing radius and, to a given order in
perturbation theory and the flow time, the product of these perturbative coefficients with the matrix
elements of smeared operators should be flow-time independent.

The sOPE also provides a natural framework for studying vacuum condensates and, in QCD,
may provide sum-rule relations that relate vacuum matrix elements determined on the lattice to
hadronic parameters. To extract meaningful physics, however, one must move beyond the toy
model of two-dimensional scalar field theory, studied here, and implement the sOPE in QCD. This
work is in progress.
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