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We report our non-perturbative study of the vacuum strucuture of the quasiparticles in graphene
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1. Problem and Formalism

Graphene is the 2 dimensional crystal, discovered in 2004 [1]. It has honeycomb lattice struc-
ture. The electric structure of the graphene at low energy is known to be the same as that of the
massless Dirac fermion. In addition, because the fermi velocity vF which plays the role of speed
of light c is vF ∼ c/300, the effective fine structure constant α is about 300 times as large as that in
the Quantum Electro Dynamics (QED). Due to this property, the essential point of the physics in
the strongly coupled QED can be tested in the experiment using the graphene. Especially, we focus
on the “atomic collapse" problem which is vacuum collapse due to strong Coulomb force. Putting
charged impurities on the graphene, a system similar to the large Z atom system can be realized,
which enable us to observe the “atomic collapse".

The knowledge how the electron respond to the charged impurity in graphene is essential
for utilization as a device. Therefore this system is well studied in one-particle theory as the
system of the two dimensional massless electron in Coulomb potential [2, 3, 4]. It is predicted that
when the charge of the impurity exceeds a critical value Zcr, the wave function drastically changes.
The massless fermion forms infinite number of quasibound states with negative energy, and the
characteristic resonances appear in the local density of states (LDOS) of the electron[5]. Inspired
by these theoretical studies, the scanning tunneling microscope (STM) experiment was carried out
and a characteristic peak in LDOS was measured[6].

In order to take the electron-electron interaction into the study of this problem, we start from
the 3+1 QED with 2+1 dimensional Dirac massless fermion around an external charge:

S =
∫

d4x
[
−1

4
FµνFµν +δ (z)ψ(i /∂ + e /A)ψ −Zeρ(x)A0

]
. (1.1)

In order to analyze the system nonperturbatively, we employ the method proposed in ref.[11] for
the atomic collapse QED with 3+1 dimensional massive fermion. See ref.[12] for details of our
calculation for 2+1 dimensional massless fermion.

We keep only spherically symmetric s-wave electromagnettic fields. Expanding the fermion
field as angular momentum expansion, we can integrate the theory with the angle. Moreover, we
keep only the lowest angular momentum m = ±1/2 mode of the fermion field, giving up higher
angular momentum mode. Then the action becomes

S =
∫

drdt
[
2πr2(∂0a1 −∂ra0)

2 −4πZer2ρ(r, t)a0

+ ∑
m=±1/2

[
um
{

γ0(i∂0 + ea0)+ γ1(i∂r + ea1)
}

um + i
1
2r

umγ5um

]]
. (1.2)

ρ(x)= ρ(r, t) is the charge density of spherical symmetric impurity, ai correspond the s-wave gauge
field, and um is the 2-component fermion field. The last term represents centrifugal force. We have
to set the boundary condition for fermion field um at r = 0 by requiring single-valuedness at r = 0.
In terms of 2D fermion um, the boundary condition is

(1− γ0)um(0, t) = 0. (1.3)
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We apply bosonization to this theory. Regarding interaction term as perturbation, we bosonize
free fermion field to free boson field,

um(r, t) =
( µ

2π

)1/2
(
−iNµ exp[i

√
π(ϕm(r, t)+ ϕ̃m(r, t))]

Nµ exp[i
√

π(−ϕm(r, t)+ ϕ̃m(r, t))]

)
, (1.4)

where

ϕ̃(x) = lim
ε→0

∫ ∞

r
dse−εsϕ̇(s, t), (1.5)

and Nµ represents normal ordering at IR mass scale µ . From now on, we use the overdot and prime
for time and spatial derivative, respectively. In this case, we should impose the boundary condition
on the boson field. The boundary condition (1.3) is rewritten in boson field as

ϕm(0, t) = 0. (1.6)

By careful treatment of the unusual commutation relation due to this boundary condition, the in-
teraction terms in fermion theory is mapped into boson field interaction terms. After some point
splitting procedure, we can write the action (1.2) in terms of boson operators. We take a1 = 0
gauge, and a0 can be integrated out. Then the Hamiltonian becomes

H =
∫

dr

[
∑

m=±1/2

{
1
2
(
π2

m +ϕ ′2
m
)
+

1
4πr2

(
1− cos(2

√
πϕm)

)}

+
e2

8πr2

{(
Φ(r, t)− 1√

π ∑
m

ϕm

)2

−Φ(r, t)2

}]
, (1.7)

where the Φ(r, t) is defined by

Φ′(r, t) = 4πZr2ρ(r, t). (1.8)

We add the c-number so that the energy becomes zero when ϕm = 0 which is vacuum configuration
with Z = 0.

2. Study of vacuum solution

In this section we find the classical solution which minimizes bosonized Hamiltonian (1.7). In
order to study the vacuum structure, we consider only static solution πm = 0. We assume that the
impurity charge is spherically spread over radius R. Then the corresponding Φ(r) becomes

Φ(r) =

{
Z
( r

R

)3
(r < R)

Z (r > R).
(2.1)

Rewriting the Hamiltonian in terms of the new variable ϕ± = 1√
2
(ϕ+1/2 ± ϕ−1/2), we notice that

ϕ− = 0 satisfies the Euler-Lagrange equation. So we take the symmetric ansatz ϕ− = 0. Then the
Euler-Lagrange equation for ϕ+ is

ϕ ′′
+− 1√

2πr2
sin(

√
2πϕ+)−

2α
πr2

(
ϕ+−

√
π
2

Φ(r)
)
= 0. (2.2)
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2.1 Asymptotic behavior

Since Eq.(2.2) is a second order differential equation, in addition to the boundary condition at
the origin we need to impose another boundary condition at r = ∞. For finiteness of total energy,
the boson field should asymptotically be constant value ϕ∗ at large r. Substituting ϕ+ = ϕ∗ into the
Euler-Lagrange equation at large r, we find that ϕ∗ should be the solution of following equation:

sin(
√

2πϕ∗) =−2α

(√
2
π

ϕ∗−Z

)
. (2.3)

Total induced charge which screens the impurity charge is given by the asymptotic value of the
boson field:

QEM =−e

√
2
π

ϕ∗. (2.4)

Notice that the asymptotic value
√

2
π ϕ∗ can take non-integer value. Charge screening with non-

integer charge may seem counter intuitive if one tries to interpret the phenomena as particle hole
pair creation. One should interpret such screening as the polarization effect.

Starting from the asymptotic solutions and solving the differential equation numerically, we
can obtain the full solution. Taking the following asymptotic form ϕ+(r) ≈ ϕ∗− A

rλ at large r and
varying A, we can search for the physical solution which satisfies the boundary condition at r = 0.
For illustration, we show the example of Z = 4 and α = 0.2; Fig.1. In this case, there are three
asymptotic solutions, but only the solution which realizes the smallest value of ϕ∗ can satisfy the
appropriate boundary condition. The full solutions from the other asymptotic form does not satisfy
the boundary condition at r = 0 but end up have positive values no matter how we choose the value
of A.

1 2 3 4
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r
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Figure 1: The blue line is l.h.s. of eq.(2.3), and red line is r.h.s. of eq.(2.3) with Z = 4, α = 0.2.

2.2 Result

We looked for the solutions for various set of parameters of (α,Z), where the parameter set is
given in [Fig. 3]. We found that only the solution with the smallest value of ϕ∗ can satisfy correct
boundary condition at r = 0 in all cases. From this fact, we reach the conjecture that the magnitude
of screening can be determined by the smallest intersection of sin(

√
2πϕ∗) and −2α(

√
2/πϕ∗−Z).
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According to this conjecture, we get effective impurity charge seen from infinitely separated point,

Zeff = Z −
√

2
π

ϕ∗, (2.5)

which is screened by induced charge [Fig.2]. Notice that when α ≳ 0.2, the effective impurity
charge Zeff in any odd Z case is the same one as in Z = 1 case. Also when α ≳ 0.14, Zeff in any
even Z case is the same one as in Z = 2 case. From this result, a phase diagram of screening is
described as [Fig.3]. In larger Z case, more branches appear in small α regime.
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Figure 2: Zeff for each Z. Dotted lines in Z = 3,4 cases describe Zeff in Z = 1,2 cases, respectively. Dashed
vertical lines describe the point Zα = 3/2 which may spoil the lowest partial wave approximation.

We can calculate the induced 2D electron density from full solution of the boson field. We fit
the scaling law

n(r) ∝ r−γ (2.6)

in the range of distances 1 ≪ r/R ≪ 10. If graphene sheet can be treated as perfect metal, the
scaling law is calculated in ref.[13] : n(r) ∝ r−3in the range of distances 1 ≪ r/R ≪ 2α2Z. In
our calculation, The scaling exponent γ depends on parameters α,Z as shown in [Fig.4]. In small
screening regime, we get γ ∼ 2.7, independently of α . Near the value of α where magnitude of
screening jumps, γ drastically decreases. In larger α regime, γ increases and becomes close to
γ = 3 which is the value calculated in perfect metal approximation.
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Figure 3: Phase diagram of screening. Crosses are the parameter point where actually we solve the equation
(2.2) in whole r.
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Figure 4: Crosses describe the scaling exponent in each Z case. Dashed line describe one in perfect metal
approximation.
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3. Summary

In this proceeding, we presented our study on quantum field theory with the 2+1 dimensional
massless fermion around an external Coulomb field. We reduced the theory to a two dimensional
fermion theory, where the higher partial wave are neglected. Bosonizing the theory, we have found
the static solution of classical equation of motion for the boson field. The magnitude of screening
is determined only by the asymptotic equation of motion. Which of these asymptotic solution
satisfies the boundary condition at r = 0 is determined by the dynamics.

Through the study of several examples, we have concluded that the realized solution is always
the smallest screening one. As a result, we have found patterns of screening depending on the
coupling α and the impurity charge Z. The screening charge undergoes a drastic change as we
change the value of α at some critical values. By solving the equation of motion in full spatial
range, we have obtained the spatial distribution of density of the induced electron. The radial
profile of the two dimensional induced charge density can be fitted by negative power in r which is
the distance from the impurity.

The validity of the approximation to neglect higher partial wave can be discussed somewhat in
semi classical theory mentioned in section 2. According to the semi classical theory, only Zα > j
wave can form quasi-bound states. So, the fermion mode whose angular momentum j is higher
than Zα is irrelevant to anomalous behavior of the electron in strong Coulomb potential. When
Zα > 3/2, the next to lowest partial wave j = 3/2 should be relevant to this problem. Therefore
our approximation should be valid only when Zα < 3/2.

References

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A.
Firsov, Science 306(2004) 666.

[2] Vitor M. Pereira, Johan Nilsson, and A. H. Castro Neto, Phys. Rev. Lett. 99 (2007) 166802.

[3] A. V. Shytov, M. I.Katsnelson, L. S. Levitov, Phys. Rev. Lett. 99 (2007) 236801.

[4] Y. Nishida, Phys. Rev. B 90 (2014) 165414.

[5] A. V. Shytov, M. I.Katsnelson, L. S. Levitov, Phys. Rev. Lett. 99 (2007) 246802.

[6] Wang, Yang, et al. Science 340 (2013) 734.

[7] S. R. Coleman, Phys. Rev. D 11 (1975) 2088.

[8] S. Mandelstam, Phys. Rev. D 11 (1975) 3026.

[9] C. G. Callan, Jr., Phys. Rev. D 26 (1982) 2058.

[10] J. A. Harvey, Phys. Lett. B 131 (1983) 104.

[11] Y. Hirata and H. Minakata, Phys. Rev. D 34 (1986) 2493.

[12] A. Kagimura and T. Onogi, arXiv:1508.00180 [hep-th].

[13] M. M. Fogler, D. S. Novikov and B. I. Shklovskii Phys. Rev. B 76 (2007) 233402.

7


