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1. Introduction

The light pseudoscalar mesons of QCD can be understood to arise as pseudo-Goldstone bosons
generated by the spontaneous breaking of chiral symmetry. The fact that they are light compared
to other hadronic scales — the proton and neutron, for example — motivates an effective field
theory description, known as chiral perturbation theory (χPT). In SU(2) χPT the up and down
quark masses are treated as small perturbations away from the mu = md = 0 limit, where the QCD
Lagrangian has an exact SU(2)L⊗ SU(2)R chiral symmetry, allowing for explicit calculations of
pion physics in terms of mu and md .

The SU(2) χPT Lagrangian is constructed using a general prescription for effective field the-
ories first proposed by Weinberg: one picks a power counting scheme and writes down the most
general Lagrangian for the pion consistent with the SU(2)L⊗SU(2)R symmetry of massless QCD
order-by-order. The relative contributions from each such operator appearing in the Lagrangian
are parametrized by a priori unknown low energy constants (LECs) which must be determined by
matching to experiment or to lattice calculations. SU(2) χPT was first explicitly constructed and
explored at next-to leading order (NLO) by Gasser and Leutwyler [1]. Full calculations of the par-
tially quenched masses and decay constants at NNLO were later performed by Bijnens and Lähde
[2], who also provided Fortran routines we use to compute the NNLO corrections in our fits.

In this talk we consider fits of RBC/UKQCD lattice data for the light pseudoscalar mesons to
the more general SU(2) partially quenched chiral perturbation theory (PQχPT) at next-to-next-to
leading order. In addition to determining low energy constants, the fits allow us to systematically
study the behavior and range of applicability of the SU(2) PQχPT expansion up to NNLO. Addi-
tional detail regarding this work can be found in Ref. [3]. Analogous fits to NNLO SU(3) PQχPT
are discussed in an accompanying talk [4].

2. Lattice Setup

In this analysis we make use of a number of RBC/UKQCD domain wall fermion ensembles
with a wide range of unitary pion masses, physical volumes, and inverse lattice spacings, summa-
rized in Table 1. In all cases we work in the isospin symmetric limit of QCD, with two, degenerate
dynamical light quark flavors of bare mass ml , and a single dynamical heavy flavor of bare mass
mh (N f = 2+ 1). We use the Iwasaki gauge action (I), and on some ensembles supplement this
with the dislocation suppressing determinant ratio (I+DSDR). We simulate QCD with N f = 2+1
quark flavors using the domain wall fermion formalism, with either the Shamir (DWF) or Möbius
(MDWF) kernel. Additional details of the ensemble generation and fits to extract the low-energy
QCD spectrum can be found in Refs. [3, 5, 6, 7, 8].

The fits we have performed include data for the pion mass and decay constant, the kaon mass
and decay constant, and the Ω baryon mass on each ensemble. On the older 24I, 32I, and 32ID en-
sembles these measurements were performed for a number of different partially quenched valence
quark mass combinations. In addition, reweighting in the dynamical heavy quark mass was used to
determine the mh dependence and allow for a small, linear interpolation from the simulated mh to
the physical value. On the newer ensembles — 32I-fine, 48I, 64I, 32ID-M1, and 32ID-M2 — we
perform a single set of unitary measurements of the same observables, and do not reweight in mh.
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Ensemble Action β L3×T ×Ls aml amh mπL mπ (MeV) a−1 (GeV)

24I
DWF+I 2.13 243×64×16 0.005 0.04 4.57(1) 339.6(1.2)

1.784(5)
DWF+I 2.13 243×64×16 0.01 0.04 5.81(1) 432.2(1.4)

32I
DWF+I 2.25 323×64×16 0.004 0.03 4.06(1) 302.0(1.1)

2.382(8)DWF+I 2.25 323×64×16 0.006 0.03 4.838(8) 359.7(1.2)
DWF+I 2.25 323×64×16 0.008 0.03 5.53(1) 410.8(1.5)

32ID
DWF+I+DSDR 1.75 323×64×32 0.001 0.046 3.999(7) 172.7(9)

1.378(7)
DWF+I+DSDR 1.75 323×64×32 0.0042 0.046 5.792(8) 250.1(1.2)

32I-fine DWF+I 2.37 323×64×12 0.0047 0.0186 3.77(4) 370.1(4.4) 3.144(17)
48I MDWF+I 2.13 483×96×24 0.00078 0.0362 3.863(6) 139.1(4) 1.729(4)
64I MDWF+I 2.25 643×128×12 0.000678 0.02661 3.778(8) 139.0(5) 2.357(7)

32ID-M1 MDWF+I+DSDR 1.633 323×64×24 0.00022 0.0596 3.78(2) 117.3(4.4) 0.981(39)
32ID-M2 MDWF+I+DSDR 1.943 323×64×12 0.00478 0.03297 6.24(2) 401.0(2.3) 2.055(11)

Table 1: Summary of ensembles included in this analysis and input parameters. Here β is the gauge
coupling, L3×T ×Ls is the lattice volume decomposed into the length of the spatial (L), temporal
(T ), and fifth (Ls) dimensions, and aml and amh are the bare, input light and heavy quark masses.
The value of mπ quoted is the unitary pion mass in physical units.

3. The Global Fit Procedure

In Ref. [6, 7, 8] we have developed a “global fit" procedure for performing a combined chiral fit
and continuum extrapolation of lattice data, the details of which we will summarize here. The chiral
ansätze we use reflect a simultaneous expansion in the quark masses1, lattice spacing, and box size
about the chiral, continuum, and infinite-volume limit. The chiral ansatz for each observable has
the schematic form

• m2
π and fπ : ( NLO or NNLO continuum SU(2) PQχPT ) + ( ∆NLO

FV ) + ( caa2; for fπ )

• m2
K and fK : ( NLO continuum heavy-meson SU(2) PQχPT ) + ( ∆NLO

FV ) + ( caa2; for fK )

• mΩ: ( linear ansatz in m̃x, m̃l , and m̃h )

where ∆NLO
FV denotes NLO finite volume corrections. We work in terms of the total quark masses

m̃q = mq +mres, including the residual mass (mres) [5]. We distinguish between “NLO” fits, where
the continuum PQχPT ansatz for the pion is truncated to NLO, and “NNLO” fits, where it is
truncated to NNLO, and emphasize that it is only the chiral ansatz for the pion which varies. After
performing the chiral fit we match to a continuum scaling trajectory by numerically inverting the
fit to determine mphys

l and mphys
s such that the ratios mπ/mΩ and mK/mΩ take their experimentally

known values; this defines mπ , mK , and mΩ to have no O(a2) corrections. We then extract the
lattice scales a = mΩ/mexpt.

Ω− from the ratio of the simulated Ω baryon mass on each ensemble,
corrected with the chiral fit to mphys

l and mphys
s , to the experimentally determined Ω− baryon mass.

We direct the reader to Ref. [3] for additional technical detail regarding the global fit procedure.

1We use the notation mx and my for the valence quarks, and ml and mh for the light and heavy sea quarks.
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4. Results

In Figure 1 we summarize the fits we have performed and their quality with histograms of the
percent deviation between each data point and the fit and tables of the values we obtain for the
relevant LECs. In all cases we are minimizing an uncorrelated χ2 (see Appendix D of Ref. [3]
for more detail regarding correlations in our data). In addition to comparing “NLO” and “NNLO”
fits, we also vary an explicit cut on the heaviest pion mass included in the fit: any ensemble with
a unitary pion mass heavier than the cut is excluded completely, as are partially quenched “pion”
measurements with mxy > mcut

π on included ensembles. We generally observe excellent consistency
between the data and the chiral fits, suggesting that SU(2) PQχPT is able to describe our lattice data
to O(1%) or better provided the mass cut is chosen appropriately for a given order of the chiral
expansion. While we observe that the NLO SU(2) ansatz has clearly started to systematically
disagree with the data for the most agressive NLO fit, we also note that the worst outliers are
O(2−3%), suggesting that the NLO expansion can still be used with percent-scale accuracy even
up to a heavy mass scale mπ ∼ 450 MeV. In the remainder of the talk we focus on the NLO fit
with a 370 MeV cut and the NNLO fit with a 450 MeV cut as representative NLO and NNLO fits
of good quality.

−3 −2 −1 0 1 2 3

∆ (%)

0

60

120

180

240

C
ou

nt

χ2 = 87.0

Ndata = 383

Ndof = 344

NLO (260 MeV cut)

−3 −2 −1 0 1 2 3

∆ (%)

χ2 = 225.3

Ndata = 668

Ndof = 626

NLO (370 MeV cut)

−3 −2 −1 0 1 2 3

∆ (%)

χ2 = 958.6

Ndata = 889

Ndof = 844

NLO (450 MeV cut)

−3 −2 −1 0 1 2 3

∆ (%)

χ2 = 131.4

Ndata = 668

Ndof = 613

NNLO (370 MeV cut)

−3 −2 −1 0 1 2 3

∆ (%)

χ2 = 240.4

Ndata = 889

Ndof = 831

NNLO (450 MeV cut)

m2
π

m2
K

fπ
fK
mΩ

Order LEC NLO fit (370MeV cut) NNLO fit (450MeV cut)

LO
BMS(µ = 2GeV) 2.804(34) GeV 2.787(39) GeV

f 121.3(1.5) MeV 121.5(1.6) MeV

NLO

103L̂(2)
0 — 1.0(1.1)

103L̂(2)
1 — -0.62(52)

103L̂(2)
2 — 0.06(74)

103L̂(2)
3 — -1.56(87)

103L̂(2)
4 -0.211(79) -0.56(22)

103L̂(2)
5 0.438(72) 0.60(28)

103L̂(2)
6 -0.175(48) -0.38(10)

103L̂(2)
7 — -0.75(27)

103L̂(2)
8 0.594(36) 0.69(13)

(b) Summary of LO and NLO LECs

Order LEC NNLO fit (450MeV cut)

NNLO
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20 -3.2(2.8)
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(

K̂(2)
21 +2K̂(2)

22

)
4.9(4.1)

106K̂(2)
23 -2.8(1.4)

106K̂(2)
25 1.3(1.7)

106
(

K̂(2)
26 +6K̂(2)

27

)
11.2(3.6)

(c) Summary of NNLO LECs

Figure 1: Top row: stacked histograms of the percent deviation between each data point and the
corresponding fit prediction (∆ ≡ 200× (Y −Y fit)/(Y +Y fit)). Panels (b) and (c): LECs of SU(2)
PQχPT defined at the chiral scale Λχ = 1 GeV from our representative fits. The errors are purely
statistical.

In Figure 2 we overlay the unitary measurements of m2
π and fπ on each ensemble with the χPT

prediction obtained using the LECs from each fit. We observe that the NLO and NNLO fits to m2
π

are completely consistent within statistics, however, we attribute this to the linearity of m2
π in the
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light quark mass: χPT predicts this linearity at tree-level, and thus the fits can easily match the full
range of data within present statistical errors simply by keeping the corrections to leading order
small. The fits to fπ provide a more stringent constraint on the loop corrections, and indeed one
can see a clear tension between the NLO fit and the heaviest 24I and 32I data, which is mitigated
when the NNLO corrections are included. We interpret this as an indication that NLO χPT and our
lattice data begin to systematically disagree at a scale of roughly mπ ∼ 350 MeV.
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(c) NNLO, 450 MeV cut
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(d) NLO, 370 MeV cut
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(e) NNLO, 450 MeV cut
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(f) NNLO, 450 MeV cut

Figure 2: Left and middle columns: Chiral extrapolation of unitary measurements. The fit has been
used to correct each data point to the physical strange quark mass and to take the infinite volume
and continuum limits. Open symbols are data which is excluded from the fit. Right column:
Decomposition of the SU(2) expansion normalized by LO, where the vertical line marks the fit cut.

Since the χPT expansion is, in general, an asymptotic rather than convergent series, it is not ob-
vious a priori at what range of quark masses a given truncation of the χPT expansion should agree
with QCD to a given precision. We explore this issue for the NNLO expansion in the rightmost
column of Figure 2 by plotting the decomposition into LO, NLO, and NNLO terms, normalized by
LO, using the LECs from the NNLO fit with a 450 MeV cut. At the physical light quark mass we
observe a nicely ordered series with

m2
π/ml = 1.0000−0.0245(41)+0.0034(10)

fπ/ f = 1.0000+0.0586(35)−0.0011(7)
, (4.1)

suggesting that NLO corrections are O(2−5%) and NNLO corrections are O(0.1−0.3%) relative
to LO. For heavier quark masses, the most obvious sign of distress in the expansion observed
in Figure 2 is associated with fπ : at the physical light quark mass one has |NNLO| << |NLO|,
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but the NNLO corrections grow relative to NLO as ml is increased. We find, for example, that
|NNLO| & 0.5|NLO| within statistical error when mπ & 450 MeV, suggesting that the NNLO
SU(2) expansion starts to become unreliable at a scale mπ ∼ 450 MeV.

In Figure 3 we compute the unquenched NLO SU(2) LECs {`i} from the values of the par-
tially quenched NLO SU(2) LECs {L̂(2)

i } determined by our fits, and compare our results (blue
circles) to the 2013 N f = 2+1 FLAG lattice averages (black squares) [9] and two phenomenolog-
ical fits (green diamonds) [1, 10]. We also plot our final predictions from Ref. [3], which include
a full systematic error budget summed in quadrature. We generally observe excellent consistency
between our fits, and find that our results for `3 and `4 compare favorably with the FLAG averages
and phenomenological fits. In our NNLO fits we are also able to constrain `1, `2, and the scale-
independent NLO LEC l7: while our results for `1 and `2 are consistent with the phenomenological
results, these LECs are determined more precisely by the ππ scattering-based phenomenological
fits. As a final test of our results we make one-loop predictions for the I = 0 and I = 2 ππ scattering
lengths (a0

0,a
2
0), and for the π±−π0 mass splitting due to the up-down mass difference. We choose

to write the latter in the dimensionless form (m2
π±−m2

π0)/(md−mu)
2.

NLO fit
NNLO fit

Prediction [3]

FLAG [9]

C/G/L [10]
G/L [1]
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3.0 3.5 4.0 4.5 5.0 5.5

`4

LEC NLO fit (370MeV cut) NNLO fit (450MeV cut)
`1 — -3.2(3.7)
`2 — 6.0(3.2)
`3 2.81(19) 3.08(49)
`4 4.015(81) 3.68(15)

103l7 — 6.5(3.8)

Prediction Expt. [11]
mπa0

0 0.199(9) 0.221(5)
mπa2

0 -0.040(3) -0.043(5)[(
m2

π±−m2
π0

)
(md−mu)

2

]
QCD

31(18) —

Figure 3: Top row: NLO SU(2) χPT LECs compared to the 2013 FLAG lattice averages and two
phenomenological determinations. Bottom row: values for the NLO LECs and some additional
one-loop SU(2) predictions from the NNLO fit (right). The reported errors are statistical only.

As an extension of this work, we have begun to explore fits which also include results for the
I = 2 ππ scattering length a2

0, which directly constrains `1 and `2 at NLO in χPT. In Figure 4 we
repeat our NNLO fit with a 450 MeV pion mass cut, and include measurements of the I = 2 ππ

scattering length (a2
0) on a subset of the ensembles. We use NLO χPT supplemented with terms

linear in mh and a2 as the chiral ansatz for mπa2
0. We find that the values of `1 and `2 we obtain are

consistent with our earlier fit, but with substantially improved statistical resolution.

5. Conclusions

In this work we have performed fits of pseudoscalar masses and decay constants from a series
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without mπa
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Figure 4: Preliminary results including the I = 2 ππ scattering length (a2
0). In the right panel the

fit has been used to correct the data to mphys
s , and take the infinite volume and continuum limits.

of RBC-UKQCD domain wall fermion ensembles to the corresponding formulae in NNLO SU(2)
PQχPT. We have reported values for a large set of partially quenched LECs, and used these values
to compute NLO unquenched LECs which we compare to other results in the literature. We find
that the chiral fits are generally of excellent quality and match our lattice data with percent-scale
accuracy provided the mass cut is chosen appropriately.

Future work will incorporate calculations of the I = 2 ππ scattering length and the pion vector
form factor. Including these results in our chiral fits will give first-principles determinations of the
scattering length a2

0, the pion charge radius 〈r2〉πV , and the SU(2) LEC `6, as well as sharpen the
predictions for `1 and `2, which are currently determined most precisely by phenomenological fits
to experimental data.
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