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We study quark condensates at zero temperature, which is the order parameter for chiral sym-
metry breaking as well as an important input parameter for the QCD sum rules and for heavy
quark expansion. Here we review the continuum property of quark condensates and explain how
to separate the contribution of the zero modes from the spectral decomposition. Then we review
the staggered fermion formalism of quark condensate and explain how to separate the contribu-
tion of the zero modes and how to identify the quantum numbers of each zero mode. We also
present preliminary numerical results of quark condensates calculated using HYP-smeared stag-
gered fermions on the MILC asqtad lattice at a∼= 0.12 fm.
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1. Quark condensate in the continuum

In continuum the quark condensate is given by

〈ψ̄ψ〉= 1
N f

〈
0|ψ̄ f ψ f |0

〉
=− 1

V N f

∫
d4x Tr

(
1

D+m

)
, (1.1)

where D is the Dirac operator, m is the quark mass, x is the space-time coordinate, V is the volume,
and N f is the number of flavors. The trace is a sum over spin and color. Let us think of the
eigenvalues of the Dirac operator. D is anti-Hermitian, so its eigenvalues are purely imaginary or
zero. Thus we can represent the eigenvalues of D as iλ and their corresponding eigenvectors as
uλ (x): Duλ (x) = iλuλ (x). By spectral decomposition,

S f (x,y) = 〈ψ f (x)ψ̄ f (y)〉= ∑
λ

1
iλ +m

uλ (x)u
†
λ
(y) (1.2)

〈ψ̄ψ〉=− 1
V ∑

λ

1
iλ +m

∫
d4x Tr (uλ (x)u

†
λ
(x)) (1.3)

=− 1
V ∑

λ

1
iλ +m

. (1.4)

where we adopt a normalization convention of 〈ua|ub〉 =
∫

d4x u†
a(x)ub(x) = δab. Let us define

u−λ ≡ γ5uλ , and then Du−λ = −iλu−λ . Hence, if there exists uλ , then its partner eigenstate u−λ

with negative eigenvalue −iλ must exist accordingly as a pair except for zero modes with λ = 0.
Now let us separate the zero mode contribution from the spectral decomposition.

〈ψ̄ψ〉=− 1
V ∑

λ>0

2m
λ 2 +m2 −

n++n−
mV

. (1.5)

Here, n+ (n−) is the number of right-handed (left-handed) zero modes per flavor.
We define the subtracted quark condensate 〈ψ̄ψ〉sub:

〈ψ̄ψ〉sub = 〈ψ̄ψ〉+ n++n−
mV

=− 1
V ∑

λ>0

2m
λ 2 +m2 (1.6)

The subtracted quark condensate 〈ψ̄ψ〉sub is expected to behave well in the chiral limit while the
contribution from the zero modes are divergent as a simple pole in the chiral limit. Hence, in the
numerical study on the lattice, it is important to identify the would-be zero modes which correspond
to the zero modes in the continuum limit, and remove them in the calculation of quark condensate.

Before proceeding, let us briefly go through the index theorem. In the continuum, the axial
Ward identity is

∂µAµ(x) = 2mP(x)+2N f q(x) . (1.7)

Here Aµ ≡ ψ̄γµγ5ψ is the axial vector current in the flavor singlet representation, P≡ ψ̄γ5ψ is the

corresponding pseudo-scalar operator, and q ≡
1

32π2Fa
µν F̃a

µν is the topological charge density (=
winding number density). Now the topological charge Q is

Q≡
∫

d4x〈q(x)〉= 1
2

∫
d4x
〈
∂µAµ(x)−2mP(x)

〉
=− m

N f

∫
d4x〈ψ̄γ5ψ〉 (1.8)

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
6
6
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Using the spectral decomposition, we can rewrite Q as follows,

Q = m∑
λ

1
iλ +m

∫
d4x

[
u†

λ
(x)γ5uλ (x)

]
. (1.9)

By the way, γ5uλ (x) = u−λ (x), and so∫
d4x

[
u†

λ
(x)γ5uλ (x)

]
= 〈uλ |u−λ 〉= 0 unless λ = 0 . (1.10)

Hence, only zero modes with λ = 0 contribute to Q. For the zero modes, it is convenient to choose
the helicity eigenstates as the basis vectors so that 〈uL

0 |γ5|uL
0〉=−1 and 〈uR

0 |γ5|uR
0 〉=+1, where the

superscripts L,R represent left-handed and right-handed helicity, respectively. Then, it is straight-
forward to derive the index theorem [1]: Q= n+−n−, where n+ (n−) is the number of right-handed
(left-handed) zero modes.

2. Quark condensate using improved staggered fermions

In the staggered fermion formalism, there are a number of improved versions such as HYP-
smeared staggered fermions, asqtad fermions, and HISQ fermions. Here, we call all of them
“staggered fermions” collectively. Staggered fermions have four tastes per flavor by construction.
Hence, quark condensate for staggered fermions is defined as

〈χ̄χ〉=− 1
V Nt

〈
Tr

1
Ds +m

〉
U
, (2.1)

where Ds is the staggered Dirac operator for a single valence flavor, V is the lattice volume, and Nt

is the number of tastes. We measure the quark condensate using the stochastic method.

(Ds +m)x,yψs(y) = ξ (x) (2.2)

ψs(x) =
[

1
Ds +m

]
x,y

ξ (y) (2.3)

Tr
1

Ds +m
= lim

Nξ→∞

1
Nξ

∑
ξ

∑
y

ξ
†(y)ψs(y) , (2.4)

where x,y are representative indices which represent the space-time coordinate and taste, color
indices collectively. Here, ξ (x) represents either Gaussian random numbers or U(1) noise random
numbers which satisfy a simple identity:

lim
Nξ→∞

1
Nξ

∑
ξ

ξ
†(x)ξ (y) = δxy ,

where Nξ is the number of the random vector samples.
Staggered fermions have a taste symmetry of SU(4)L⊗ SU(4)R⊗U(1)V in the continuum

limit at a = 0. However, this symmetry breaks down to a subgroup of U(1)V ⊗U(1)A on the lattice
with a 6= 0 [2,3]. This remaining axial symmetry of U(1)A plays an important role in protecting the
quark mass from receiving an additive renormalization. In addition, it does not have any anomaly.
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Let us turn to the spectral decomposition of the staggered Dirac operator. As in the continuum,
the staggered Dirac operator Ds is anti-Hermitian and so its eigenvalues are purely imaginary or
zero.

Ds fλ (x) = +iλ fλ (x) (2.5)

〈χ(x)χ̄(y)〉= Sst(x,y) = ∑
λ

1
iλ +m

fλ (x) f †
λ
(y) (2.6)

where fλ (x) is an eigenstate for an eigenvalue iλ . Hence, using Eq. (2.6), we can rewrite the quark
condensate as follows,

〈χ̄χ〉=− 1
V Nt

∑
λ

1
iλ +m

〈 fλ | fλ 〉=−
1

V Nt
∑
λ

1
iλ +m

, (2.7)

where 〈 fλ | fλ ′〉=
∫

d4x f †
λ
(x) fλ ′(x) = δλλ ′ .

In the continuum, the chiral symmetry insures that there must be an partner eigenstate with
−iλ for each eigenstate with its eigenvalue +iλ . Similarly, for staggered fermions, the U(1)A
symmetry guarantees the same kind of duality in the eigenstates. The generator for the U(1)A
symmetry is ε = [γ5⊗ ξ5]. It anti-commutes with the staggered Dirac operator: εDs = −Dsε .
Hence, f−λ (x) = ε fλ (x), if λ 6= 0. Since the non-zero eigenvalues of Ds exist as ± pairs, we can
rewrite the quark condensate as follows,

〈χ̄χ〉=− 1
V Nt

∑
λ>0

2mv

λ 2 +m2
v
− ñ++ ñ−

mvV Nt
=

1
V Nt

∑
λ>0

2mv

λ 2 +m2
v
− n++n−

mvV Nt
, (2.8)

where mv is the valence quark mass, and ñ± are the numbers of zero modes with P± = (1± ε)/2
projection, respectively. Here we can define the subtracted quark condensate as

〈χ̄χ〉sub = 〈χ̄χ〉+ n++n−
mvV Nt

=
1

V Nt
∑

λ>0

2mv

λ 2 +m2
v

(2.9)

Once more, it is important to identify the zero modes in the staggered fermion formulation.
Now let us turn to the zero modes and index theorem in the staggered fermion formalism. The

generator for the anomalous U(1)anom
A symmetry is A5 = [γ5⊗1] in the staggered fermion formal-

ism. This U(1)anom
A symmetry is broken on the lattice with a > 0, and restored in the continuum

limit of a = 0 which, however, is broken by the well-known anomaly. Hence, the Ward identity
of Eq. (1.7) does not have its correspondence in the staggered fermion formalism. Then, we may
raise a question: how does the index theorem work in the staggered fermion formalism? A simple
answer is to use the spectral flow method [4, 5].

Let us consider a Hermitian operator Hs:

Hs ≡−iDs +µ[γ5⊗1] , (2.10)

Where µ is just a tuning parameter for the eigenvalue λs(µ). Since Hs is Hermitian, its eigenvalue
must be real.

Hs fs(x,µ) = λs(µ) fs(x,µ) , (2.11)
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where fs is the corresponding eigenstate. In the limit of µ = 0, λs(µ = 0) = λ and fs(x,µ = 0) =
fλ (x). We can express λs(µ) as

λs(µ) = 〈 fs(µ)|Hs| fs(µ)〉 . (2.12)

Now let us take a derivative with respect to µ and use the normalization convention of 〈 fs(µ)| ft(µ)〉=
δst . Then, we obtain the following expression for the chirality.

λ
′
s(µ) = 〈 fs(µ)|[γ5⊗1]| fs(µ)〉 . (2.13)

Here, we define the chirality operator as follows,

〈 fs(µ)|[γ5⊗1]| fs(µ)〉 ≡
∫

d4x f †
s (xA,µ)(γ5⊗1)ABU(xA,xB) fs(xB,µ) (2.14)

(γS⊗ξT )AB =
1
4

Tr (γ†
AγSγBγ

†
T ) (2.15)

U(xA,xB) = PSU(3)

[
∑

p∈C
V (xA,xp1)V (xp1 ,xp2)V (xp2 ,xp3)V (xp3 ,xB)

]
(2.16)

where xA = 2x+A, and A,B are the hypercubic vectors with Aµ ,Bµ ∈ {0,1}, V (x,y) is a HYP-
smeared gluon link, PSU(3) represents the SU(3) projection, and C represents a complete set of the
shortest paths from A to B. The advantage of the chirality operator in Eq. (2.14) is that it satisfies
the same recursion relationship as the continuum chirality operator: for n > 0 and n ∈ Z,

[γ5⊗1]2n+1 = [γ5⊗1] , (2.17)

[γ5⊗1]2n = [1⊗1] , (2.18)

[
1
2
(1± γ5)⊗1]n = [

1
2
(1± γ5)⊗1] , (2.19)

[
1
2
(1+ γ5)⊗1][

1
2
(1− γ5)⊗1] = 0 . (2.20)

From Eq. (2.13), we can define the chirality (X) of the zero modes in the staggered fermion
formalism as

X =±1 = sign

(
lim
λ→0

[
lim
µ→0

λ
′
s(µ)

])
(2.21)

Here, note that λs(µ = 0) = λ . This is called the spectral flow method. Therefore, it is rigorously
possible to determine the chirality index of the zero modes with staggered fermions using the
spectral flow method. Hence, even though we cannot derive the index theorem directly from the
chiral Ward identity as in the continuum, we can still get around the difficulty using the spectral
flow method, and determine the chirality index correctly, and identify the index theorem and the
topological contribution to the quark condensate rigorously in the staggered fermion formalism.

We have not proved yet that ñ++ ñ− = n++n−. Let us consider the following relationship:

ε[γ5⊗1] = [γ5⊗1]ε , (2.22)

ε[1⊗ξ5] = [1⊗ξ5]ε , (2.23)
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where [1⊗ξ5] is defined as

〈 fs(µ)|[1⊗ξ5]| fs(µ)〉 ≡
∫

d4x f †
s (xA,µ)(1⊗ξ5)ABU(xA,xB) fs(xB,µ) , (2.24)

and satisfies the recursion relationship: for n > 0 and n ∈ Z,

[1⊗ξ5]
2n+1 = [1⊗ξ5] , (2.25)

[1⊗ξ5]
2n = [1⊗1] , (2.26)

ε = [γ5⊗ξ5] = [γ5⊗1][1⊗ξ5] = [1⊗ξ5][γ5⊗1] (2.27)

Since ε , [γ5⊗1], and [1⊗ ξ5] commutes with one another, it is possible to use the quantum
numbers of these operators to identify the zero modes. Let us define them as Z =±1 for ε , X =±1
for [γ5⊗1], and Y =±1 for [1⊗ξ5]. Here, note that Z = XY . Hence, we can sort out zero modes
as in Table 1. Therefore, it is obvious that

nXY X Y Z = XY
n++ +1 +1 +1
n+− +1 −1 −1
n−+ −1 +1 −1
n−− −1 −1 +1

Table 1: nXY represents the number of zero modes with X and Y quantum numbers.

n+ = n+++n+− (2.28)

n− = n−++n−− (2.29)

ñ+ = n+++n−− (2.30)

ñ− = n+−+n−+ (2.31)

At this stage, it becomes trivial to prove that ñ++ ñ− = n++n−.
One may raise a question of how to determine the quantum number Y . A simple answer is that

since X and Z are good quantum numbers, Y = XZ must be so. However, we need a more elaborate
and rigorous answer to this question, since, if Y is a good quantum number, there should be a direct
method to determine it definitely.

Let us consider a Hermitian operator, H̃s ≡ −iDs + µ̃[1⊗ ξ5] Since it is Hermitian, its eigen-
values must be real and so H̃s f̃s(x, µ̃) = λ̃s(µ̃) f̃s(x, µ̃). We can apply the same logic of the spectral
flow method to the eigenvalue, and then, in the end of the day, we obtain the following relation.

λ̃
′
s(µ̃) =

dλ̃s(µ̃)

dµ̃
= 〈 f̃s(µ̃)|[1⊗ξ5]| f̃s(µ̃)〉 . (2.32)

From this, we can determine Y in the staggered fermion formalism as follows,

Y =±1 = sign

(
lim
λ→0

[
lim
µ̃→0

λ̃
′
s(µ̃)

])
(2.33)

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
0
6
6

Calculation of Quark Condensate Hwancheol Jeong

 0.9

 0.95

 1

 1.05

 0  0.01  0.02  0.03  0.04  0.05

- 
<
- ψ

ψ
>

 /
 (

a
m

q
)

Quark Mass (amq)

staggered

 1

 1.02

 1.04

 1.06

 0  0.002  0.004  0.006  0.008  0.01

 0.9

 0.95

 1

 1.05

 1.1

 0.001  0.003  0.01  0.03

- 
<
- ψ

ψ
>

 /
 (

a
m

q
)

Quark Mass (amq)

staggered

Figure 1: Quark condensates. Results are preliminary and unrenormalized bare.

Here, note that λ̃s(µ̃ = 0) = λ . Using this method similar to the spectral flow method, it is possible
to determine the quantum number Y rigorously.

In Fig. 1, we show a preliminary result of the quark condensate calculated using HYP-smeared
staggered fermions as valence quarks on the MILC asqtad lattices at a ∼= 0.12 fm with m`/ms =

0.01/0.05 [6]. Here, we have not yet nail down all the zero modes with their quantum numbers
X ,Y,Z identified. We plan to do it in near future.
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