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Lattice QCD simulations are inevitably carried out in finite volume and euclidean time, which
complicates scattering calculations [1]. Since most excited hadrons are unstable resonances which
appear experimentally as features in scattering cross sections, first-principles calculation of hadron-
hadron scattering amplitudes is desirable. The relation between finite-volume two-hadron spectra
and infinite-volume elastic scattering amplitudes was formulated by Lüscher [2, 3] more than two
decades ago and extended to moving frames in Ref. [4]. However, only recently have algorithmic
advances in lattice QCD spectroscopy enabled finite-volume spectra to be calculated efficiently in
large volume with light pion masses.

These advances concern the treatment of all-to-all propagators, which are required to give
definite momenta to all hadrons and to treat valence-quark-line-disconnected Wick contractions.
Laplacian-Heaviside (LapH) quark smearing projects the quark propagator onto the subspace span-
ned by the lowest-lying Nv eigenmodes of the three-dimensional covariant Laplace operator [5].
Stochastic noise introduced only in the LapH subspace results in more efficient estimators for all-
to-all quark propagators compared to noise on the entire lattice [6].

The spatial profile of the LapH subspace projector is approximately Gaussian, as with other
quark smearing procedures. In order to maintain a constant physical smearing radius, Nv must
increase proportionally to the spatial volume. However, in Ref. [6] it was demonstrated that with a
moderate amount of dilution in the LapH subspace, the number of quark matrix inversions can be
held constant as the spatial volume is increased without increasing the stochastic estimation error
relative to the gauge noise. This enables all-to-all quark propagators to be estimated efficiently in
large spatial volumes for a reasonable cost.

The efficient treatment of all-to-all quark propagators in turn enables precision calculation of
correlation functions containing multi-hadron interpolating operators with definite momenta and/or
disconnected Wick contractions. From these correlation functions, finite-volume energies can be
precisely extracted, which then yield elastic scattering amplitudes. The application of these tech-
niques to extract elastic pion-pion scattering amplitudes from large volume ensembles is the subject
of this work. Sec. 1 details a first application of the stochastic LapH method to large volume, in
which the I = 1 and I = 2 elastic pion-pion scattering phase shifts are calculated. With an eye
toward larger, finer lattices at lighter pion masses, Sec. 2 presents a preliminary calculation of the
I = 1 scattering phase shift and timelike pion form factor on an ensemble generated through the
Coordinated Lattice Simulations (CLS) community effort.

1. I = 1 and I = 2 phase shifts from a large-volume anisotropic lattice

For a first large-volume application of the stochastic LapH method, we employ an anisotropic
lattice regularization, in which the spatial lattice spacing (as) is larger than the temporal one (at).
The renormalized anisotropy ξR = as

at
is defined by demanding that pions satisfy the correct (con-

tinuum) dispersion relation

(atEπ)
2 = (atmπ)

2 +

(
2πas

ξRL

)2

d2, (1.1)

∗Speaker.
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(L/as)
3× (T/at) mπ(MeV) at(fm) ξR mπL Ncfg

323×256 240 0.035 3.4418(94) 4.3 412

Table 1: Details for the anisotropic N f = 2+1 gauge configurations used here. For a complete discussion of
the ensemble generation and scale setting, see Ref. [7]. For definition of the LapH subspace and specification
of dilution schemes, see Ref. [6].

where d ∈ Z3 is the quantized finite-volume momentum. Details on the anisotropic ensemble used
here are found in Tab. 1.

The anisotropy is crucial in defining the center-of-mass momentum (discussed later), and thus
care must be taken in its determination. We employ two different methods which are consistent
within statistical errors. In the first we calculate atEπ for all pions with d2 ≤ 5 on Nb = 800
identical bootstrap samples of the corresponding correlation functions using correlated χ2 fits. We
then perform correlated χ2 fits on each bootstrap sample to Eq. 1.1 to obtain ξR. Our second
determination of ξR simultaneously fits all of these correlation functions to obtain ξR directly.

In order to calculate elastic scattering phase shifts, we require correlation functions containing
two-pion interpolating operators which transform irreducibly according to the lattice symmetries.
In particular, we require such correlation functions at various total momenta, and construct ap-
propriate operators which transform irreducibly under the corresponding little groups according to
Ref. [8]. While this operator construction procedure can be used to construct spatially-extended
operators with gauge-covariantly displaced quark fields (which are ideal for high-lying resonance
states), we employ only single-site hadron operators in this work.

In order to extract the finite-volume energies in each irrep we evaluate a matrix of correlation
functions Ci j(t) = 〈Oi(t)Ō j(0)〉 and solve the generalized eigenvalue problem (GEVP)

C(td)v(t0, td) = λ (t0, td)C(t0)v(t0, td) (1.2)

for a single (t0, td). The eigenvectors {vn(t0, td)} from this diagonalization define ‘optimal’ inter-
polating operators [9] whose correlation matrix Ĉi j(t) = 〈Oi(t)Ō j(0)〉= (vi(t0, td),C(t)v j(t0, td)) is
mostly diagonal. In order to get a preliminary idea of the spectrum, we perform single exponential
fits to the diagonal elements of this rotated correlation matrix to extract the energies, taking care
to vary (t0, td) to ensure that any systematic error associated with the off-diagonal elements of the
rotated correlation matrix is smaller than the statistical one. We find that generally the variation
of the GEVP parameters has little effect on the extracted energies. The fitting range [tmin, tmax] is
chosen by fixing tmax = 38at and varying tmin until a suitable χ2 is achieved and a plateau is evident.
Examples of such tmin plots are shown in Fig. 1 which illustrate both the quality of the plateaux and
insensitivity to the GEVP parameters.

In addition to finite-volume energies, we can use GEVP eigenvectors to estimate the overlaps
Zin = |〈0|Ôi|n〉|2 between our operators and the finite-volume Hamiltonian eigenstates. We estimate
these overlaps by constructing the ratio

Zin(t) =

∣∣∣∣∣∣∑ j Ci j(t)vn j(t0, td)

e−
En
2 t
√

Ĉnn(t)

∣∣∣∣∣∣
2

, (1.3)
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Figure 1: Representative tmin plots from exponential fits to diagonal elements of the rotated correlation
matrices. Each plot shows results from two different choices for the GEVP parameters.
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Figure 2: I = 1 center-of-mass energies (upper panel) for each irrep together with the overlaps of each
interpolator. Each column corresponds to an irrep, and the bar graphs below show relative overlaps of each
interpolating operator onto the (color-coded) finite-volume Hamiltonian eigenstates.

where En is the fitted energy, and taking t = 20at .

The I = 1 finite-volume spectra in irreps where an infinite-volume JPG = 1−+ state appears
are shown in Fig. 2. There we show center-of-mass energies Ecm =

√
E2−P2, with P = 2π

L d, in
units of mπ as well as overlaps onto our interpolators. As the ρ meson is present in these irreps,
we employ local single-meson operators (denoted ρ(d2)) as well as two-pion operators, which are
denoted π(d2

1)π(d2
2) where d2 = (d1 +d2)

2. Correlation functions with equivalent total momenta
are averaged for each d2.

A clear picture emerges from these energies and overlaps. It is only two-pion interpolating
operators which have significant overlap with states far below Ecm

mπ
≈ 3.2, while single-ρ interpola-

tors have overlap for states with energies at or above this value. Due to G-parity, the lowest-lying
inelastic threshold is at Ecm = 4mπ . While we are able to precisely extract energies near and above
this threshold, they cannot be used to extract infinite-volume scattering information. Although ex-
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tensions of the Lüscher formula above three-hadron thresholds has been developed [10, 11, 12, 13],
a rigorous treatment of four-hadron thresholds is still lacking.

In order to obtain elastic scattering phase shifts, we first define the kinematic quantities

Ecm =
√

E2−P2, γ =
E

Ecm
, q2

cm =
1
4

E2
cm−m2

π , u2 =
L2q2

cm

(2π)2 , (1.4)

where E is the fitted two-hadron energy. Generally, the relation between these quantities and the
infinite-volume scattering matrix takes the form det {1+F(d,γ)(u2)[S(Ecm)−1]}= 0, where F is a
known kinematic function and S is the infinite-volume scattering matrix. This relation holds up to
corrections which are exponential in the volume and the determinant is taken over the usual (`,m)

indices of partial waves, in which F is non-diagonal.
For this work we ignore higher partial waves. Precisely, this means neglecting ` ≥ 3 partial

waves in I = 1 p-wave scattering and `≥ 2 partial waves in I = 2 s-wave scattering. After applying
this approximation and block-diagonalizing in lattice irreps, the above relation takes the particularly
simple form

q2`+1
cm cotδ` =−q2`+1

cm φ
(d,γ,Λ)(u2) (1.5)

for each finite-volume irrep Λ. The functions φ (d,γ,Λ)(u2) involve Rummukainen-Gottlieb-Lüscher
shifted zeta functions (Z(d,γ)

lm (u2)) and are given in e.g. Ref. [14] for I = 1, `= 1. For I = 2, Eq. 1.5
takes the even simpler form

qcmcotδ0(q2
cm) =

2
γL
√

π
Z(d,γ)

00 (u2) (1.6)

for both the A+
1g and A+

1 irreps used in this work. It should be noted that near the two-pion threshold
q2`+1

cm cotδ` is analytic and thus Eq. 1.5 is valid for also for negative q2
cm. In order to efficiently

evaluate these zeta functions we employ a method described in Ref. [15] which agrees with our
implementation of Appendix A in Ref. [14].

While the single-exponential fits discussed above provide preliminary spectra, the center-of-
mass momentum and thus the scattering phase shifts are very sensitive to these energies. For two-
hadron dominated levels, the energies will be very close to their non-interacting values. Therefore,
for these levels it is beneficial to perform fits to the ratio of two and single-hadron correlators (as
in Ref. [16] but here generalized to arbitrary momenta)

R(t) =
〈Od2

1,d
2
2
(t)Ōd2

1,d
2
2
(0)〉

〈Od1(t)Ōd1(0)〉〈Od2(t)Ōd2(0)〉
, (1.7)

where Ôd2
1,d

2
2

is a optimized operator for an eigenstate dominated by individual pions with momenta
of magnitude d2

1 and d2
2, respectively. The Od are single-pion operators with momentum d. Single

exponential fits to these ratios directly yield this energy difference, and typically have less excited
state contamination than ordinary single exponential fits. However, the excited state contamina-
tion in such fits may not be monotonically decreasing, which can complicate the identification of
the plateau region in some cases. Another method to better resolve differences between the two-
and single-hadron energies is to perform simultaneous fits to the two hadron correlators included

5
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Figure 3: The I = 1 p-wave scattering phase shift (left) and I = 2 s-wave phase shift (right) together with
fits to q2`+1

cm cotδ` described in the text.

in the ratio of Eq. 1.7. While both methods yield consistent results, we quote values from the
simultaneous fits, as they result in more conservative statistical errors.

The resultant scattering phase shifts are shown in Fig. 3 for both I = 1 and I = 2, together with
fits to q2`+1

cm cotδ`. Care must be taken to treat the correlation between x− and y-errors as well as
among the data points in these fits. Upon every call to the correlated χ2 function, we estimate the
necessary covariance matrix using the Nb = 800 bootstrap samples of these secondary observables.
The minimization is performed on each bootstrap sample, where bootstrap replica of the means
are used together with the covariance matrix to construct the correlated χ2. For I = 1 p-wave
scattering, we fit to a relativistic Breit-Wigner form(

qcm

mπ

)3

cotδ1 =

(
m2

ρ

m2
π

− E2
cm

m2
π

)
6πEcm

g2
ρππmπ

(1.8)

and obtain

gρππ = 6.16(36),
mρ

mπ

= 3.324(24),
χ2

d.o. f .
= 1.43 (1.9)

where the coupling is in good agreement with the experimental value. For I = 2 s-wave scattering,
we employ the NLO effective range expansion to the points at low momenta qcm ≤ mπ(

qcm

mπ

)
cotδ0 =

1
mπa0

+
1
2
(mπr)

(
qcm

mπ

)2

(1.10)

and obtain

mπaI=2
0 =−0.157(19), mπr = 7.9(2.4), χ

2/d.o. f .= 0.61. (1.11)

The JLab group [17] has recently calculated the I = 1 p-wave phase shift on this same ensem-
ble using the distillation method of Ref. [5]. While their results are more precise than those quoted
here, significantly more Dirac matrix inversions are required. Using the notation of Ref. [6], we
employ (TF, SF, LI8) dilution for fixed quark lines and (TI16, SF, LI8) for relative ones. Our use
of five fixed and two relative lines (with eight source times) results in ND = 2304 Dirac matrix
inversions for each gauge configuration, while Ref. [17] requires ND = 393216 for the distillation
method.
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(L/a)3× (T/a) mπ(MeV) a(fm) mπL Ncfg

483×128 280 0.065 4.3 1710

Table 2: Details for the isotropic Nf = 2+1 gauge configurations used here. For a complete discussion of
the ensemble generation and preliminary scale setting, see Ref. [18].

2. I = 1 phase shifts and the timelike pion form factor on a CLS ensemble

Motivated by the efficacy of the stochastic LapH method in the large-volume calculation de-
scribed in Sec. 1, we now employ it to isotropic Nf = 2+ 1 ensembles generated within the CLS
community effort [18]. These ensembles have a variety of lattice spacings, physical volumes, and
pion masses enabling an assessment of these systematic errors. As a first step in this direction, here
we use a single ensemble (the N200) which is described in Tab. 2.

Rather than the periodic (anti-periodic) temporal boundary conditions for bosons (fermions)
which are typically employed in the lattice QCD simulations, these ensembles use ‘open’ temporal
boundary conditions [19] which improve the scaling of the exponential autocorrelation time τexp as
the continuum limit is approached. This means source and sink times must be chosen carefully in
order to avoid boundary effects. Based on the observables considered in Refs. [18, 20] and on the
behavior of the LapH eigenvalues, we use t0 = T/4 = 32a.

In the gauge-covariant 3-D Laplace operator used to define the LapH subspace we stout
smear [21] the gauge links with parameters (ρ,nρ) = (0.1,36). We choose a LapH cutoff σs ≈
1GeV which results in a cutoff eigenvalue of (aσs)

2 ≈ 0.11 and Nv = 192. The physical volume is
somewhat smaller on this lattice compared to the anisotropic ensemble of Sec. 1, so a reduced Nv is
expected. We employ the same (TF, SF, LI8) dilution scheme for fixed lines, but for relative lines
use (TI8, SF, LI8) as the temporal lattice spacing is larger. We use four independent fixed quark
lines, a single relative line, and one source time t0 = 32a. The ND = 384 Dirac matrix inversions
per configuration are performed using the DFL-SAP-GCR solver [22] implemented in openQCD1,
which we have integrated into the stochastic LapH codebase. The results from these inversions are
projected onto the LapH subspace and stored for later use in other calculations, such as Ref. [23].
Finally, these ensembles employ RHMC and twisted mass re-weighting, and we multiply all pri-
mary observables by the corresponding re-weighting factors.

The renormalization and O(a) improvement of composite operators is simplified on an isotropic
lattice. Furthermore, the regularization employed by these CLS ensembles is well studied and many
renormalization and improvement coefficients have been previously determined. Therefore, in ad-
dition to applying the methods of Sec. 1 to calculate the I = 1 p-wave scattering phase shift, we
also calculate a matrix element of the vector current with two-pion states. The simplest such matrix
element of phenomenological relevance is the timelike pion form factor. As before we are restricted
to the elastic region which, for this ensemble is 2mπ ≤ Ecm ≤ 2mK . In this region the timelike pion
form factor |Fπ(Ecm)|2 can be defined as [24]

R(s)≡ σ(e+e−→ hadrons)
4πα(s)2/(3s)

=
1
4

(
1− 4m2

π

s

) 3
2

|Fπ(
√

s)|2, (2.1)

1http://luscher.web.cern.ch/luscher/openQCD/
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where the denominator in R(s) is the tree-level cross section σ(e+e−→ µ+µ−) for s = E2
cm�m2

µ .
Effectively, this form factor describes QCD corrections to the coupling of a (virtual) photon to two
pions. It is phenomenologically relevant because of (e.g.) its relation to the low-energy contribution
to the hadronic vacuum polarization (HVP) Π(Q2). For spacelike four-momentum transfer Q2, the
once-subtracted dispersion relation

Π(0)−Π(Q2) = Q2
∫

∞

0
ds

ρ(s)
s(s+Q2)

, ρ(s) =
R(s)
12π2 (2.2)

expresses the HVP in terms of R(s). Typically, this dispersion relation is not used in lattice QCD
calculations of the HVP which is instead calculated directly from current-current correlation func-
tions. Furthermore, the relation between R(s) and |Fπ(Ecm)|2 given in Eq. 2.1 is valid only in the
elastic region, while the integral in Eq. 2.2 is unbounded from above. However, direct lattice calcu-
lations of the HVP require fully disconnected Wick contractions (which are typically ignored), and
suffer from large statistical errors and finite-volume effects in the low-Q2 region [25]. Therefore,
a ‘hybrid’ determination which combines lattice data from both Π(Q2) and |Fπ(Ecm)|2 may be the
best approach2.

In analogy with earlier work by Lellouch and Luscher [26], a relation between the infinite-
volume |Fπ(Ecm)|2 and finite-volume matrix elements (up to exponential finite-volume corrections)
was derived by Meyer in Ref. [27]

|Fπ(Ecm)|2 =g(d,Λ)(γ)

(
u

dφ (d,Λ)(u2)

du
+qcm

∂δ1(qcm)

∂qcm

)
3πE2

cm

2q5
cm
|A(d,Λ)|2, (2.3)

g(d,Λ)(γ) =

{
1/γ if Λ = A1

γ else
,

where φ (d,Λ)(u2) is given in Eq. 1.5 and

A(d,Λ) = 〈0|V (d,Λ)|dΛn〉 (2.4)

is a finite-volume matrix element involving an I = 1 two-pion state with total momentum d in
irrep Λ below inelastic threshold. While this relation was derived only for total zero momentum
in Ref. [27], it may be straight-forwardly extended to non-zero total momentum using the argu-
mentation of Ref. [28]. A proof-of-principle application of this relation was performed recently in
Ref. [29] while a similar matrix element is calculated in Ref. [30].

Since we work in the isospin limit, the electromagnetic current Ĵem
i = 2

3 ūγiu− 1
3 d̄γid− . . . is

replaced by the isospin current

V a
i = ψ̄γi

τa

2
ψ, ψ =

(u
d

)
, (2.5)

where τa is an SU(2) generator. Furthermore, we project this current onto finite-volume irreps by
defining V (d,Λ) = b(d,Λ)i Vi. The vectors b(d,Λ) are given in Tab. 3 for all irreps used in this work.
In order to obtain the derivative of the p-wave phase shift required in Eq. 2.3, we first perform the

2We thank Harvey Meyer for clarifying this point.
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Reference momentum d Irrep Λ b
[000] T1u (1,0,0)
[00n] A1 (0,0,1)

E (0,1,0)
[0nn] A1

1√
2

(0,1,1)

B1 (1,0,0)
B2

1√
2

(0,-1,1)

[nnn] A1
1√
3

(1,1,1)

E 1√
2

(1,-1,0)

Table 3: Linear combinations of components of the vector current such that V (d,Λ) = b(d,Λ)i Vi transforms
irreducibly according to the irrep Λ.

complete phase shift analysis and parametrize the energy dependence of δ1 using the Breit-Wigner
form of Eq. 1.8. The derivative is then evaluated on each bootstrap sample and taken together with
bootstrap samples of the current matrix elements of Eq. 2.4 to obtain samples of |Fπ(Ecm)|2.

In order to obtain the current matrix elements in Eq. 2.4, we must evaluate correlation functions
of the form

Di(t) = 〈V (d,Λ)(t0 + t)Ō(d,Λ)
i (t0)〉 , (2.6)

where the {O(d,Λ)
i } are interpolators used in the GEVP of Eq. 1.2. In order to ensure an O(a2)

approach to the continuum limit, the currents V (d,Λ) are linear combinations of the renormalized,
O(a)-improved local vector current (VR)µ defined as [31]

(VR)
a
µ = ZV(1+bV amq){V a

µ +acV∂̃νT a
µν}, (2.7)

where ZV, bV, and acV are renormalization and improvement coefficients, amq the bare quark
mass in lattice units, T a

µν = iψ̄σµν
τa

2 ψ , and ∂̃ν the symmetrized lattice derivative. A preliminary
determination of the renormalization coefficient ZV for the CLS lattice regularization has been
provided in Ref. [32], while bV, and acV are calculated to 1-loop in Ref. [33]. For this preliminary
work, we subsitute the unrenormalized PCAC mass amPCAC for amq which holds at tree level,
so that O(a) improvement is formally implemented only at this order. However, this effect is
suppressed by the small quark mass.

In the stochastic LapH framework interpolators are built from quark fields projected onto the
LapH subspace, while quark fields appearing in the current are local. However, this can be easily
accommodated by forming the meson functions in Eq. 32 of Ref. [6] with quark sinks which are not
projected into the LapH subspace. The unprojected ‘current’ functions are otherwise completely
analogous to the meson functions in the construction of correlators but are calculated immediately
after the Dirac matrix inversions but before the sinks are projected and written out to disk. In
practice, correlation functions required for the matrix elements

A(0)
n = 〈0|V (d,Λ)|dΛn〉, A(1)

n = 〈0|b(d,Λ)i ∂̃νT a
iν |dΛn〉 (2.8)

9
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are calculated and analyzed separately.
We turn now to extraction of the matrix elements given Eq. 2.8. In analogy with our procedure

for the energies, we measure the correlation functions of Eq. 2.6 and with the GEVP eigenvectors
form their ‘optimized’ counterparts D̂i(t) = (D(t),vi(t0, td)), where the inner product is taken over
the GEVP indices. Up to GEVP corrections (treated as a systematic error as described in the
previous section) these optimized correlation functions have the large-time behavior

lim
t→∞

D̂i(t) = 〈0|V (d,Λ)|dΛi〉〈dΛi|Ō(d,Λ)
i |0〉× e−E(d,Λ)

i (t−t0). (2.9)

This suggests three different ratios which tend to the matrix elements of interest:

R(i)
1 (t) =

D̂i(t)

Ĉ
1
2
ii (t)e

− 1
2 Ei(t−t0)

, R(i)
2 (t) =

D̂i(t)〈dΛn|Ō(d,Λ)
i |0〉

Ĉii(t)
, R(i)

3 (t) =
D̂i(t)

〈dΛn|Ō(d,Λ)
i |0〉e−Ei(t−t0)

,

(2.10)

where the overlaps and energies appearing in these expressions are obtained from fits to the di-
agonal elements of the rotated correlation matrix. The value of the matrix element is taken to be
a plateau average of the ratio over a suitable region. Alternatively, simultaneous fits to Ĉii(t) and
D̂i(t) may also be used to extract the desired matrix elements. Generally we find that all four
of these different determinations yield results which are consistent within statistical errors for fit
ranges in the plateau region.
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Figure 4: The p-wave scattering phase shift on the N200 CLS lattice. Shown are q3
cm cotδ1 (left) and δ1

(right) together with a Breit-Wigner fit to q3
cm cotδ1. The resultant fit parameters are given in the text. The

lowest inelastic threshold is at 2mK ≈ 3.2mπ . Points above this threshold are shown on the graphs but not
included in the fit.

Our results from the phase shift determination on this lattice are shown in Fig. 4. As mentioned
above, the lowest inelastic threshold in this channel is due to two kaons at 2mK ≈ 3.2mπ . Although
we have a number of energy levels above this threshold, they are not included in the final analysis
but shown for illustration. As before, we fit q3

cm cotδ1 to the Breit-Wigner form of Eq. 1.8 which
gives

gρππ = 5.68(24),
mρ

mπ

= 2.745(24),
χ2

d.o. f .
= 1.20 (2.11)
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which is somewhat lower than the experimental value of gρππ . The Breit-Wigner parametriza-
tion of the phase shift in Eq. 2.3 together with the matrix elements A(0), A(1) and renormaliza-
tion/improvement coefficients of Eq. 2.7 enables the extraction |Fπ(Ecm)|2, which is shown in
Fig. 5. Also shown in that figure is the ratio of the matrix element appearing in the O(a) term
over the leading order one. We see that this O(a) matrix element grows from ∼ 10% of the leading
one at low momenta to ∼ 30% at our largest momentum. Due to the small 1-loop value of acV,
this term therefore has no significant effect on our final results. However, non-perturbative deter-
minations of these improvement coefficients can be considerably larger than the 1-loop value [34]
possibly increasing the influence of this term to the few-percent level. In future work , an alterna-
tive calculation which employs the point-split vector current will give an additional handle on the
magnitude of these O(a) effects.

2 2.5 3 3.5 4
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Figure 5: The timelike pion form factor together with the expected Gounaris-Sakurai parametrization using
the previously-calculated mρ and gρππ (left). The ratio of the matrix element which contributes at O(a) over
the leading order one is shown on the right for each of the form factor data points.

Also shown in Fig. 5 is the Gounaris-Sakurai parametrization of |Fπ(Ecm)|2 which (using the
notation of Ref. [35]) is

FGS
π (
√

s) =
f0

q2
cmh(
√

s)−q2
ρh(mρ)+b(q2

cm−q2
ρ)−

q3
cm√
s i
, (2.12)

b =−h(mρ)−
24π

g2
ρππ

−
2q2

ρ

mρ

h′(mρ), f0 =−
m2

π

π
−q2

ρh(mρ)−b
m2

ρ

4
, h(

√
s)

2
π

qcm√
s

ln
(√

s+2qcm

2mπ

)
,

where qρ is the center-of-mass momentum at the resonance energy. The curve shown in Fig. 5 is
not a fit but a ‘prediction’ using the values of mρ and gρππ obtained from the phase shift analysis.
We see that this GS model fits our data rather well.

3. Conclusion

A first large-volume application of the stochastic LapH method to calculate pion-pion scatter-
ing on an anisotropic lattice has been performed. This results in a good precision for both the I = 1
and I = 2 the phase shift and improved momentum resolution due to the large volume. While the
energies differ significantly from their non-interacting values in the I = 1 p-wave irreps, stochastic
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LapH is sufficiently precise to resolve the differences for I = 2 s-wave scattering scattering phase
shift as well. The fewer points below inelastic threshold here are due to the reduced number of
irreps in which the s-wave contributes. A first look at scattering in the final isospin combination
(I = 0) is underway, but complicated by both ‘annihilation’ Wick contractions and the need for a
vev subtraction when d = 0.

Motivated by this success on the anisotropic lattice, we have started to apply these techniques
to isotropic lattices with lighter pion masses and smaller lattice spacings generated by the CLS com-
munity effort. This work reports on a first preliminary calculation of the I = 1 p-wave scattering
phase shift on a single 482× 128 ensemble with mπ = 280MeV and a = 0.064fm. Using consid-
erably fewer Dirac matrix inversions on this ensemble compared with the anisotropic one yields
results for mρ and gρππ with comparable statistical precision. Apart from the scattering phase shift,
we also calculate the timelike pion form-factor, which is related to the hadronic vacuum polariza-
tion at low four-momentum transfer. Given the moderate number of inversions required, we plan to
increase our current level of statistics for this form factor by using an additional source time. Fur-
thermore, while we average over equivalent orientations of the total momentum d in calculation of
the correlation functions used for δ1, we have not done so for those used for |Fπ(Q2)|2. Preliminary
tests indicate that this averaging has a significant impact on the precision of the form factor and it
will be performed on the additional source time, possibly resulting in a significant reduction in the
statistical errors. Finally, calculations of the scattering phase shift and timelike pion form factor on
additional CLS ensembles are underway.
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