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1. Introduction

The formation of the helium nuclei was examined in quenched lattice QCD at the pion mass
mπ = 0.8 GeV in Ref. [1]. After this calculation, several calculations [2, 3, 4, 5] of nucleus with
the nuclear mass number less than or equal to four have been reported. However, there are discrep-
ancies between the lattice calculations and the experiments: the binding energy of the nucleus is
larger than the experimental one, and the dineutron, which does not exist in nature, is formed in the
lattice calculation.

One possible explanation of the differences from the experiment is systematic errors coming
from larger mπ than the physical one in the calculations. To check this possibility, we calculate the
nuclei in the 4He, 3He, two-nucleon spin-triplet(3S1) and spin-singlet(1S0) channels in N f = 2+1
QCD at mπ = 0.3 GeV. The result of this calculation has already been published in Ref. [6].

Furthermore, we calculate the nucleon form factors at almost physical mπ on a large volume
of the spatial extent of 8 fm. Preliminary results of some physical quantities obtained from the
nucleon form factors are also presented in this report.

2. Light nuclei

For the nuclei calculation at mπ = 0.3 GeV, we generate the gauge configurations with the
Iwasaki gauge action and a non-perturbative improved Wilson quark action in N f = 2+ 1 QCD
at the lattice spacing of a = 0.09 fm on the two lattice sizes, L3 × T = 483 × 48 and 643 × 64,
corresponding to the spatial extent of 4.3 and 5.8 fm, respectively. The correlation functions in the
4He, 3He, 3S1 and 1S0 channels are measured on the gauge configuration. In the measurement an
exponential smeared quark source and point sink operators are employed in all the channels. The
details of the simulation are explained in the published paper [6].

We identify bound state in each channel from the volume dependence of the energy shift [7,
8, 9], ∆EL = ENN −NNmN , where ENN is the ground state energy of NN-nucleon channel and mN

is the nucleon mass on a volume of the spatial extent of L. We observe that ∆EL is nonzero in the
infinite volume limit for all the channels. Thus, we conclude that there is nucleus in each channel,
and determine the binding energy from the value of ∆EL in the infinite volume limit.

2.1 Helium channels

The results of the binding energy at mπ = 0.3 GeV for the 4He and 3He channels are shown
in each panel of Fig. 1 together with the previous results and the experimental values. In the 4He
channel the binding energy of mπ = 0.3 GeV is similar in magnitude with our previous results for
N f = 2+ 1 at mπ = 0.51 GeV [5] and N f = 0 at mπ = 0.80 GeV [2]. Furthermore, the result is
consistent with the experiment within 1.5 σ using the upper total error, where the statistical and
systematic errors are added in quadrature.

The result of mπ = 0.3 GeV in the 3He channel has the large systematic error, since the effec-
tive ∆EL does not have clear plateau in both the volumes. Our result and the ones in the previous
calculations have larger binding energy than the experimental data, which might be caused by the
larger mπ in the calculations than the physical one.
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Figure 1: Binding energies for 4He (left) and 3He (right) channels as a function of m2
π . The inner bar of each

data denotes the statistical error and the outer bar represents the total error with the statistical and systematic
ones added in quadrature. Filled circle is the result of this calculation. Left, right, down triangles, and square
symbols are the previous results in Refs. [1, 10, 4, 5], respectively.
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Figure 2: Binding energies for two-nucleon 3S1 (left) and 1S0 (right) channels as a function of m2
π . The inner

bar of each data denotes the statistical error and the outer bar represents the total error with the statistical and
systematic ones added in quadrature. Filled circle is the result of this calculation. Diamond, left, right, up,
down triangles, and square symbols are the previous results in Refs. [11, 12, 2, 3, 4, 5], respectively. Violet
up and cyan down triangles are recent results by NPLQCD [13] and CalLat [14] Collaborations.

2.2 Two-nucleon channels

The results of the 3S1 and 1S0 channels in the two-nucleon systems are summarized in Fig. 2.
The circle symbol in each panel is the result of mπ = 0.3 GeV. The open symbols express the
data calculated on one volume, so that it is not clear whether the calculated state is bound or
attractive scattering state. All the closed symbols are confirmed that the existence of nucleus by
the investigation of volume dependence of ∆EL. The result of this work in both the channels is
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reasonably consistent with our previous result at mπ = 0.5 GeV and also the result at mπ = 0.45
GeV of NPLQCD Collaboration.

For comparison with the experiment, the lattice results in the 3S1 channel has a factor five to
ten times larger binding energy than the experiment. Furthermore, all the lattice results in the 1S0

channel has the bound state, which is not observed in the experiment. It might be caused by the
larger mπ than the physical one in the calculations, while we have not observed the expected mπ

dependences such that the binding energy approaches to the experimental value in the 3S1 channel,
and it decreases toward the chiral limit in the 1S0 channel. It is an important future work to check
the consistency with the experiment in the physical mπ . For this purpose we start calculation
at almost physical point of mπ = 0.145 GeV in the two-nucleon channels as well as the helium
channels.

3. Nucleon form factors

Nucleon form factors are measured on the N f = 2+1 QCD gauge configurations generated at
almost physical point of mπ = 0.145 GeV on a large volume of the spatial extent of 8 fm. The lattice
spacing is about 0.086 fm. For the configuration generation and the form factor measurement, we
employ Iwasaki gauge action and the stout smeared O(a) improved Wilson quark action. The
results of hadron spectrum with this gauge configuration are presented in this conference [15].

The nucleon form factors are obtained from the nucleon three-point functions of the local
vector and axial vector currents. We adopt the sequential source method to calculate the three-point
functions using an exponential smeared quark fields in the nucleon operators in the source and sink
time slices, which are separated by 15 lattice units. The three-point functions are calculated from
only connected diagrams, so that we calculate the isovector part of the nucleon form factors. We use
104 configurations, and perform 64 measurements of the three-point functions per configuration.
All the results presented in the next subsections are preliminary.

3.1 ZV and Axial charge

Using the vector three-point function at the zero momentum transfer, we evaluate the renor-
malization factor of the vector current ZV shown in the left panel of Fig. 3. The result is consistent
with ZV and the renormalization factor of the axial vector current ZA calculated in Schrödinger
functional scheme within 2%. This means that the chiral symmetry breaking effect is small in this
quantity. The calculation in Schrödinger functional scheme is presented in this conference [16].

The axial charge gA is evaluated from the three-point function of the axial vector current at
zero momentum transfer presented in the right panel of Fig. 3. We use ZA shown in the left panel of
Fig. 3 to renormalize the bare gA. The bare gA is calculated from the ratio of the three- and two-point
functions, and also the same ratio but with the two-point function reconstructed from its fit result.
The discrepancy of the two results shown in the figure is a systematic error of this calculation.
While the statistical errors are still large, the results are comparable to the experimental result.

3.2 Vector form factors

The preliminary result of the electric and magnetic Sachs form factors, GE(q2) and GM(q2), is
presented in the left and right panels of Fig. 4, respectively. We also plot the experimental curves in
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Figure 3: Preliminary results of renormalization factor of vector current ZV (left) and axial charge gA(right)
at mπ = 0.145 GeV. The solid lines express constant fit results with error band. In the left panel, ZV (dashed
line) and ZA(dot-dashed line) in Schrödinger functional scheme [16] with the error band are also plotted. In
the right panel, the experimental value is expressed by dashed line, and the two results are explained in text.
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Figure 4: Preliminary results of electric and magnetic Sachs form factors, GE(q2)(left) and GM(q2)(right)
at mπ = 0.145 GeV. The dashed lines and star symbol express experimental results.

the figure. The form factors are evaluated from the three-point function of the vector current at the
nonzero momentum transfer q2 in the same way as in Ref. [17]. While statistical errors are large, it
is encouraging that GE(q2) agrees with the experiment, and GM(q2) is roughly consistent with the
experimental curve.

The Dirac and Pauli form factors, F1(q2) and F2(q2), are evaluated from GE(q2) and GM(q2)

by solving the linear equations,

GE(q2) = F1(q2)− q2

4m2
N

F2(q2), GM(q2) = F1(q2)+F2(q2). (3.1)

The mean square Dirac radius ⟨r2
1⟩ is estimated from our result of F1(q2) assuming the dipole form,

F1(q2) = 1/(1+ ⟨r2
1⟩q2/12)2. At each q2 the effective ⟨r2

1⟩ [18] is evaluated from the dipole form,

⟨r2
1⟩=

12
q2

(√
1

F1(q2)
−1

)
. (3.2)

The result of the effective ⟨r2
1⟩ is plotted in Fig. 5. Since the typical result of ⟨r2

1⟩ at mπ > 0.3 GeV
is smaller than the experiment, for example the one at mπ = 0.33 GeV in Ref. [17] plotted in the
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Figure 5: Preliminary results of mean square Dirac radius ⟨r2
1⟩ at mπ = 0.145 GeV. The circle symbols are

effective ⟨r2
1⟩, and the solid lines are the dipole fit of F1(q2) with the error band. The dotted and dashed lines

represent experimental result and the previous result at mπ = 0.33 GeV [17], respectively.

figure, it is encouraging that our result is consistent with the experiment within the large statistical
error. The q2 dependence of the effective ⟨r2

1⟩ is reasonably flat. Thus, we obtain a consistent result
from a dipole fit of F1(q2) plotted in Fig. 5.

4. Summary

We have calculated the binding energies of nuclei in the 4He, 3He, two-nucleon 3S1, and 1S0

channels at mπ = 0.3 GeV in N f = 2+1 lattice QCD. We have obtained consistent results with the
ones in our calculation at mπ = 0.5 GeV in all the channels, and the ones in the recent calculation
by NPLQCD Collaboration at mπ = 0.45 GeV in the two-nucleon channels. We, however, have not
observed mπ dependences of the binding energy approaching to the experimental values, especially
in the two-nucleon channels. It is an important future work to check the consistency with the
experimental result from calculations in the physical mπ . For this direction, we have already started
the calculation at mπ = 0.145 GeV in all the channels. Other possible sources of systematic error
are finite lattice spacing effect and excited state contaminations discussed in Ref. [6].

We also have calculated the nucleon form factors at almost physical mπ . While the results
are still preliminary, the encouraging results are obtained in gA, GE(q2), GM(q2), and ⟨r2

1⟩, which
are roughly consistent with the experiment within the large statistical error. An important future
work is to reduce statistical error, and compare with the experiment and also the recent lattice
calculations near physical mπ , which are summarized in the recent plenary talks [19, 20].
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