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We compute potentials of two static antiquarks in the presence of two quarks qq of finite mass
using lattice QCD. In a second step we solve the Schrödinger equation, to determine, whether
the resulting potentials are sufficiently attractive to host a bound state, which would indicate
the existence of a stable qqb̄b̄ tetraquark. We find a bound state for qq = (ud− du)/

√
2 with

corresponding quantum numbers I(JP)= 0(1+) and evidence against the existence of bound states
with isospin I = 1 or qq ∈ {cc,ss}.
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1. Motivation

A number of mesons observed in experiments like LHCb or Belle are not well understood.
Those mesons have masses and quantum numbers, which are not typical for standard quark-
antiquark states, but indicate an exotic four-quark structure. Prominent examples are the charged
charmonium-like and bottomonium-like states Zc

± and Zb
± (cf. e.g. [1]). Their masses and decay

products suggest the presence of a cc̄ or bb̄ pair, respectively. On the other hand their electric charge
indicates additionally a light quark-antiquark pair ud̄ or dū. Those four-quark systems, in the fol-
lowing also referred to as tetraquarks, are expected to be studied in more detail in the near future
by experimental collaborations. Therefore, a sound theoretical understanding of those systems is
crucial and of great interest.

Here we summarize the main results of our recently published work [2], where we have studied
four-quark systems with two heavy antiquarks b̄b̄ and two lighter quarks qq using lattice QCD and
the Born-Oppenheimer approximation. First b̄b̄ potentials in the presence of lighter quarks qq are
computed. Then the Schrödinger equation is solved using these potentials, where possibly existing
bound states indicate stable tetraquarks. Other papers studying the same systems with similar
methods include [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

2. Qualitative discussion of qqb̄b̄ systems

At small b̄b̄ separations the b̄b̄ interaction is dominated by 1-gluon exchange. For a bound
state the b̄b̄ pair must, therefore, be in an attractive color triplet. Due to the Pauli principle and
because we assume a spatially symmetric s-wave, b̄b̄ has to form an antisymmetric color-spin-flavor
combination and, hence, a symmetric spin combination, i.e. b̄b̄ spin jb = 1. Since the complete
four-quark system is color neutral, the light quarks qq must be in an antisymmetric color antitriplet.
Again due to the Pauli principle qq has to form an antisymmetric color-spin-flavor combination
and, hence, a symmetric spin-flavor combination. Candidates for tetraquarks are, therefore, the
(spin) scalar isosinglet (i.e. a qq spin singlet j = 0 with antisymmetric flavor, e.g. qq ∈ {(ud−
du)/
√

2 , (s(1)s(2)− s(2)s(1))/
√

2 , (c(1)c(2)− c(2)c(1))/
√

2}1) and the (spin) vector isotriplet (i.e. a
qq spin triplet j = 1 with symmetric flavor, e.g. qq∈ {uu , (ud+du)/

√
2 , dd , ss , cc}). The overall

quantum numbers of a bound qqb̄b̄ system are I(JP) = 0(1+) for the scalar isosinglet channel and
I(JP) ∈ {1(0+) , 1(1+) , 1(2+)} for the vector isotriplet channel.

At large b̄b̄ separations the b̄b̄ interaction is screened by the light quarks qq, i.e. the four
quarks form a system of two heavy-light mesons. One expects stronger screening for increasing
quark mass mq, because the wave functions of the corresponding mesons qb̄ are then more compact.

3. Lattice QCD computation of static antiquark-antiquark potentials

We extract potentials of two static antiquarks Q̄Q̄ (approximating the two b̄ quarks of the qqb̄b̄
system) in the presence of two light quarks qq from correlation functions

C(t,r) = 〈Ω|O†(t)O(0) |Ω〉 ∝
t→∞

exp(−V (r)t). (3.1)

1To be able to study flavor antisymmetric qq combinations with q = s, we consider two hypothetical degenerate
flavors with the mass of the s quark, s(1) and s(2), and similarly for q = c, c(1) and c(2).
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O denotes a four-quark creation operator,

O = (C Γ)AB(C Γ̃)CD

(
Q̄C(r1)q

(1)
A (r1)

)(
Q̄D(r2)q

(2)
B (r2)

)
, r = |r1− r2|, (3.2)

where Γ is an appropriate combination of γ matrices accounting for defined quantum numbers light
quark spin | jz|, parity P and Px (cf. [8] for details). Γ̃ ∈ {(1− γ0)γ5 , (1− γ0)γ j} does not affect
the resulting potential V (r), since the static quark spin is irrelevant. C = γ0γ2 denotes the charge
conjugation matrix. Note that operators like (3.2) generate overlap not only to mesonic molecule
structures, but also to diquark-antidiquark structures [15, 16].

The asymptotic value of a potential and whether it is attractive or repulsive depends on the
quantum numbers (| jz|,P,Px) and, hence, on Γ. In the following we are exclusively interested in at-
tractive potentials between two ground state static-light mesons: the scalar isosinglet corresponding
to Γ = (1+ γ0)γ5 and the vector isotriplet corresponding to Γ = (1+ γ0)γ j.

Computations have been performed using two ensembles of gauge link configurations gener-
ated by the European Twisted Mass Collaboration (ETMC) with dynamical u/d quarks. Informa-
tion on these ensembles can be found in Table 1 and [17, 18].

β lattice size µl a in fm mπ in MeV # configurations
3.90 243×48 0.00400 0.079 340 480
4.35 323×64 0.00175 0.042 352 100

Table 1: Ensembles of gauge link configurations (β : inverse gauge coupling; µl: bare u/d quark
mass in lattice units; a: lattice spacing; mπ : pion mass).

4. qqb̄b̄ tetraquarks in the Born-Oppenheimer approximation

To determine an analytical expression for the Q̄Q̄ potential or equivalently b̄b̄ potential, we fit
the ansatz

V (r) = −α

r
exp

(
−
(

r
d

)2)
+V0 (4.1)

with respect to α , d and V0 to the lattice QCD results obtained in the previous section. The constant
V0 accounts for twice the mass of the ground state static-light meson.

We insert the the analytical expression (4.1) in the Schrödinger equation for the radial coordi-
nate of the two b̄ quarks (which we assume to be in an s-wave),(

− 1
2µ

d2

dr2 +U(r)
)

R(r) = EBR(r) (4.2)

with U(r) = V (r)|V0=0 and µ = mb/2 and determine the lowest eigenvalue EB. If EB < 0, the
four quarks qqb̄b̄ can form a tetraquark. If EB > 0, there is no binding, i.e. the four-quark system
will always be a system of two unbound B mesons. Notice that this so-called Born-Oppenheimer
approximation is valid for mq � mb, which is certainly the case for q ∈ {u , d , s} and at least
crudely fulfilled for q = c.

To quantify the systematic errors of different channels (scalar isosinglet and vector isotriplet,
different light flavors q ∈ {u , d , s , c}), we perform a large number of fits varying the range of
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temporal separations tmin ≤ t ≤ tmax of the correlation function C(t,r) (cf. eq. (3.1)), at which the
lattice potential is read off, as well as the range of spatial b̄b̄ separations rmin ≤ r≤ rmax considered
in the χ2 minimizing fit of eq. (4.1) to the lattice potential. Details on this parameter variation
can be found in [2]. For each set of input parameters (tmin, tmax,rmin,rmax) we determine α , d
and EB. Then we generate histograms for α , d and EB weighted according to the corresponding
χ2/dof. The widths of these histograms are taken as systematic errors of α , d and EB [19], while
the statistical errors are obtained via a jackknife analysis. In Figure 1 example histograms for the
scalar isosinglet for qq = ud are shown.
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Figure 1: Histograms for the scalar isosinglet for qq = ud. The red/green/blue bars indicate the
statistical/systematic/combined errors.

The resulting potentials fits for different channels, i.e. eq. (4.1) with corresponding values
for α and d, are collected in Figure 2. The error bands represent the combined systematic and
statistical errors. One can observe that the potentials are wider and deeper for lighter qq quark
masses. Moreover, the scalar channels are more attractive than the respective vector channels.
Correspondingly, it turns out that there is a bound state only for the scalar isosinglet with qq = ud
with binding energy −EB = 93+47

−43 MeV, i.e. a bound state with around 2σ confidence level.
In Figure 3 we present our results in an alternative graphical way. The three plots correspond

to u/d, s and c light quarks qq, respectively. Each fit of eq. (4.1) to lattice potential results is
represented by a dot (red: scalar channels; green: vector channels; crosses: rmin = 2a; boxes: rmin =

3a). The extensions of the point clouds represent the systematic uncertainties with respect to α and
d. If a point cloud is localized above or left of the isoline with EB = −0.1MeV (essentially the
binding threshold), the corresponding four quarks qqb̄b̄ cannot form a bound state. A localization
below or right of that isoline is a strong indication for the existence of a tetraquark. Again there
is clear evidence for a tetraquark state in the scalar u/d channel. The scalar s channel is slightly
above, but rather close to the binding threshold. The scalar c and all vector channels clearly do not
host bound four-quark states.

5. Summary and outlook

We have found a udb̄b̄ tetraquark with quantum numbers I(JP) = 0(1+) (i.e. in the scalar
isosinglet channel with qq = ud) with a confidence level of around 2σ . There seem to exist no
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Figure 2: Potentials fits for different channels (upper line: scalar isosinglet; lower line: vector
isotriplet). The curves without an error band are copied from the respective other plots in the same
line for easy comparison. Vertical lines indicate the available lattice b̄b̄ separations.

tetraquarks for the other channels.
In this work lattice QCD computations have been performed for light u/d quarks correspond-

ing to mπ ≈ 340MeV. We plan to repeat the analysis for at least another pion mass and then
extrapolate to the physical point. It will then be most interesting to check, whether a bound state
will also appear in the vector isotriplet channel with qq = ud. Another aspect is to investigate
the structure of the found I(JP) = 0(1+) tetraquark, i.e. to explore, whether it is rather a mesonic
molecule or a diquark-antidiquark pair. We also plan to include corrections due to the heavy quark
spins (for first preliminary results cf. [14]). Finally, one should study the experimentally more
accessible, but theoretically more challenging case of qq̄bb̄ systems.
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Figure 3: Binding energy isolines EB = constant in the α-d-plane for u/d, s and c light quarks qq
together with the fit results of eq. (4.1) to lattice potentials.
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