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1. Introduction

The nature of the light nonet scalar mesons continues to be an interesting problem in hadron
physics. The sigma resonance in I=J=0 channel is now accepted since pole was determined in
precise and systematic analyses of the π-π scattering respecting the crossing symmetry as well as
the chiral symmetry. The Particle Data Group (PDG) summary quotes a mass of the σ in the range
400 to 700 MeV[1]. The significance of the σ meson is closely related to the chiral symmetry
in QCD. The σ meson may be identified a chiral partner of the π in the linear representations of
SU(2) × SU(2) symmetry. However, the physical content and the mechanism for realizing such a
light state in the JPC=0++ state is still not well understood. Most popular ideas is the tetraquark
proposed by Jaffe[2], who showed that the color magnetic interaction between the di-quark and
anti-di-quark gives a large attraction to down the masses of the scalar mesons around 600 MeV. On
the other hand, most simple idea is that the wave function of the σ meson also have components of
the molecule states. Recently, these have been many new states that have been discovered such as
the X(3872), Y (4260), Z(4430), Zb(10610), and Zb(10650) [1]. It would be interesting to see how
the four-quark state or the components of a hadron change as the quark masses are changed.

We report the possible significance of the four-quark state in the I=0 scalar mesons using two-
flavor full lattice QCD simulations[3]. Several quenched lattice simulations for I=0 scalar mesons
have been carried out [4, 5, 6, 7, 8]. The first full QCD calculations of the σ meson have been
investigated by the SCALAR Collaboration[9], where the q̄q interpolating operator only, the obtain
mσ ∼ mρ . It was found that the connected and the disconnected diagrams contribute to the σ meson
propagator in the same order. Recently, Prelovesek et al. [10] investigated the possibility that the
σ meson is well described as a four-quark state, i.e., a molecular or tetraquark state. They omitted
the disconnected diagrams. We show that the quark loops given by the disconnected diagrams
observed play an essential role in making the four-quark exist. We perform simulations both with
and without disconnected diagrams and compare them.

2. Formulation

We adopt the following two types of the operator for four-quark states. The molecular inter-
polation operator are given by

Omolec(t) =
1√
3

[
Oπ+

(t)Oπ−
(t)−Oπ0

(t)Oπ0
(t)+Oπ−

(t)Oπ+
(t)

]
, (2.1)

where Oπ+
(t), Oπ−

(t), and Oπ0
(t) are the π meson operators made up of two quarks. They are

given by

Oπ+
(t) = −∑

xa
d̄a(t,x)γ5ua(t,x) , Oπ−

(t) = ∑
xa

ūa(t,x)γ5da(t,x) ,

Oπ0
(t) =

1√
2 ∑

xa

[
ūa(t,x)γ5ua(t,x)− d̄a(t,x)γ5da(t,x)

]
, (2.2)

where a is the index of the color.
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The tetraquark interpolation operators are given by

O tetra(t) = ∑
a

[ud]a(t)[ūd̄]a(t) , (2.3)

where [ud]a(t) and [ūd̄]a(t) are diquark and antidiquark operators, respectively, written as

[ud]a(t) =
1
2 ∑

xb,c
εabc

[
uT b(t,x) Cγ5 dc(t,x)−dT b(t,x) Cγ5 uc(t,x)

]
,

[ūd̄]a(t) =
1
2 ∑

xb,c
εabc

[
ūb(t,x) Cγ5 d̄T c(t,x)− d̄b(t,x) Cγ5 ūT c(t,x)

]
, (2.4)

with the charge conjugation matrix C.
For the interpolation operators of the molecule and tetraquark there are other possible candi-

dates. For example, in Ref. [10], vector- and axial-vector-type operators as well as pseudoscalar-
type operators were used for the molecule. For the tetraquark, in addition to the (anti)pseudoscalar
diquark operators, the (anti)scalar diquark operators are also employed. The choice of the operators
for the molecule and tetraquark is motivated by the fact that pseudoscalar mesons are the lightest
mesons and diquarks with Cγ5 are the lightest diquarks [11].

The propagator Gi(t) for the four-quark operators is written as

Gi(t) =
〈
O i(t)O i†(0)

〉
, i = molec or tetra, (2.5)

where O i is the molecular or tetraquark interpolation operator.
We show the diagrams for the elements of the propagator Gi(t): the molecule Gmolec(t) and

the tetraquark Gtetra(t). Through the functional integral of Eq. (2.5) with the quark fields, the
propagator of the molecular operator Gmolec(t) is written as

Gmolec(t)=2
[

D(t)+
1
2

C(t)−3A(t)+
3
2

V (t)
]

, (2.6)

where D(t), C(t), A(t), and V (t) correspond to direct, crossed, single annihilation (singly discon-

Figure 1: The diagrams for the propagator of the molecular operator Gmolec(t).

nected), and vacuum (doubly disconnected) diagrams, respectively (Fig. 1). The detailed expres-
sion for each diagram is given in the Appendix. The tetraquark propagator is given by

Gtetra(t)=2
(
D′

1(t)+D′
2(t)

)
−2

(
A′

1(t)+A′
2(t)+A′

3(t)+A′
4(t)

)
+

(
V ′

1(t)+V ′
2(t)+V ′

3(t)+V ′
4(t)

)
, (2.7)

where D′(t), A′(t), and V ′(t) are shown in Fig. 2. The number index of D′(t), A′(t), and V ′(t)
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Figure 2: The diagrams for the propagator of the tetraquark operator Gtetra(t).

represents the difference of the combination of the color index. The difference between Figs. 1 and
2 is in the directions of the arrows on the quark lines.

Both propagators Gmolec(t) and Gtetra(t) contain doubly disconnected diagrams V (t) and V ′(t),
which are neglected in our calculations. Assuming that the Nc counting scheme[12] also works for
Nc = 3, we apply it to the contraction in the diagrams. We estimate the orders of the diagrams in
Figs. 1-2: D(t) and D′(t) ∼ O(N2

c ), C(t) ∼ O(Nc), A(t) and A′(t) ∼ O(Nc) and V (t) and V ′(t)
∼ O(1). Under the above assumption, we may neglect the doubly disconnected diagrams V (t)
and V ′(t) compared with other diagrams. Moreover, the large-Nc counting suggests that the singly
disconnected diagrams A(t) and A′(t) become the same order as the crossed diagram C(t). The
singly disconnected diagrams may play an essential role in the understanding of four-quark states
and should not be neglected.

3. Numerical Simulations

We calculate the molecule and the tetraquark propagator in the two-flavor full QCD simula-
tions. We generate the gauge configurations using the same simulation parameters (clover coeffi-
cient CSW = 1.68 and coupling β = 1.7) as those in Ref. [13], except for the lattice size. The lattice
size in our calculation is set to 83×16, which is smaller than that in Ref. [13]. First we produce the
two-flavor full QCD configurations using the hybrid Monte Carlo method with the clover-improved
Wilson quark action. The first 2000 trajectories are updated in the quenched QCD, then we switch
to simulations with the dynamical fermion. The next 100 hybrid Monte Carlo trajectories are
discarded for thermalization; then we start to store the configurations every ten trajectories. The
numbers of configurations at the dynamical hopping parameter values of κ = 0.146, 0.147, and
0.148 are 16496, 14344, and 11720, respectively. Our estimated critical hopping parameter κc and
the lattice size are κc = 0.152(6) and a = 0.269(9) fm, respectively. The critical hopping parame-
ter is estimated by the linear extrapolation of the square of the pion mass (mπa)2 as a function of

Table 1: Masses of π and ρ and number of configurations.

κ mπa mπ MeV mρa mρ MeV Configurations
0.146 1.018(2) 747(27) 1.431(4) 1050(39) 16496
0.147 0.930(2) 682(25) 1.358(6) 996(38) 14344
0.148 0.827(4) 607(23) 1.304(10) 956(39) 11720
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the inverse of the hopping parameter in Fig. 4. In Fig. 4 we plot rho meson masses as a function of
the inverse of the hopping parameter and compute the value of the rho meson mass at the inverse
of the critical hopping parameter from the linear extrapolation of the plots. From comparison be-
tween the rho meson mass at 1/κc, mρa and the physical mass mρ = 770 MeV, we obtain the lattice
spacing a = 0.269(9) fm. We list the values of the π and ρ meson masses together with the number
of configurations at κ = 0.146,0.147, and 0.148 in Table 1. We calculate the quark propagators
using a point source and sink with the clover-improved Wilson quark action. For the disconnected
diagrams we employ the Z2-noise method with the truncated eigenmode approach. We carry out
the dilution in the temporal direction[14], in which the numbers of noise vectors and eigenvalues
are 120 and 12, respectively.

Figure 3: The effective masses of the molecule (open triangles) and tetraquark (open squares) without
the singly disconnected diagrams at κ = 0.148, and the effective masses of the molecule (solid triangles)
and tetraquark (solid squares) with the singly disconnected diagrams at κ = 0.148. The data are plotted at
t/a±0.2 for visibility.

We show the effective masses obtained from the propagators Gmolec and Gtetra in Fig. 3. The
effective masses are defined by

Gi(t)
Gi(t +1)

=
e−mi

eff(t)t + e−mi
eff(t)(T−t)

e−mi
eff(t)(t+1) + e−mi

eff(t)(T−(t+1))
, i = molec or tetra. (3.1)

Figure 3 shows the effective masses without the singly disconnected diagrams as a function
of time. The molecule has a clear plateau in the behavior of the effective masses in the range
1 ≤ t ≤ 5. The value of the plateau is the same as 2mπ , which would suggest that the molecule has
a large overlap with the two-particle π-π scattering state. On the other hand, the values of effective
masses of the tetraquark are larger than those of the molecule at small t and decrease significantly
with time as reported in Ref.[10]. We do not observe a clear plateau in the effective masses of the
tetraquark. At t = 6,7 the small mass drop is found in effective masses of molecule. To understand
it we need to check whether the small mass drop still exists in the larger lattice size calculation.
Currently we have not reached any physical interpretation of it.

In Fig. 3 we show the effective masses as a function of time for the molecule and tetraquark
with the singly disconnected diagrams. The behavior of the effective masses of the molecule with
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Figure 4: (color online). The quark mass dependence of the square of the π meson mass (solid circles),
double the π meson mass (open triangles), the ρ meson mass (open circles), the mass of the molecule
(diamonds), and the mass of the tetraquark (open squares). We plot the masses of the molecule both with
(solid diamonds) and without (open diamonds) the singly disconnected diagram. The chiral limit is given by
κc = 0.152(6).

the singly disconnected diagram is almost the same as that without the singly disconnected diagram.
There is a clear plateau in effective masses whose value is the same as 2mπ . We find a dramatic
change in the behavior of the effective masses of tetraquark due to the existence of the singly
disconnected diagrams. A plateaulike structure appears at small t whose values are larger than
those of molecule, which implies that the tetraquark has a small overlap with the lowest state in the
molecule.

In Fig. 4, we display (mπ)2, 2mπ , mρ , mmolec, mmolec
con , and mtetra in the lattice unit as a function

of the inverse hopping parameter. The masses of the molecular operators are obtained from plateaus
of the effective masses in the range 2 ≤ t ≤ 5. The difference between the masses of the molecular
operator with the singly disconnected diagram and those without the singly disconnected diagram
is small at κ = 0.146,0.147, and 0.148. In both cases, the extracted masses are identical to 2mπ

which would suggest that the molecular operators have a large overlap with the two-particle π-π
scattering state. To confirm it, the investigation of the energy shift of the two-particle π-π state
would be helpful [4, 15]. If we assume that the plateaulike structure of the effective masses of the
tetraquark with the singly disconnected diagrams in 1 ≤ t ≤ 4 exists, we can evaluate the mass of
the tetraquark. The mass from the tetraquark operator is larger than that of the molecular operator
and the difference between the masses becomes larger at smaller quark mass. It indicates that the
tetraquark operators have smaller overlap with the lowest state in the molecular operators and the
mass of them can be a mixture of the excited state. In the calculation, we do not observe any bound
four-quark states in the molecular and tetraquark operators.

4. Summary

We explored the possible significance of the four-quark states in I=0 scalar channel in lattice
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QCD with the two-flavor dynamical quarks. We carried out the results of the effective masses of
two types of interpolation operators for the creation of four-quark states, including the estimate of
the singly disconnected diagrams, for the first time. We showed that the quark loops given by the
disconnected diagrams play an essential role in propagators of molecular and tetraquark operators.
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