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1. Introduction

The glueballs are truly non-perturbative objects in QCD (see [1] for a review of glueballs).
We desperately hope they exist in nature, even if they are mixed in with quark degrees of freedom,
but, as many Beyond the Standard Model (BSM) experts are finding, experiment may ultimately
disappoint us. The quenched glueball spectrum was largely settled over a decade ago [2, 3]. Recent
efforts have focused on unquenching the glueball spectrum [4]. Even more recently, it has been
speculated, that the 0" glueball in some strongly interacting BSM theories is a candidate for a
composite Higgs [5, 6].

In this paper we discuss some technical issues in lattice QCD studies of glueball degrees of
freedom, as part of our long term goals to find experimental evidence for them and their possible
contribution to BSM theories. In this paper we stick with the SU(3) theory.

2. Unquenching the pseuodoscalar glueball

There are a number of challenges with searching for glueball degrees of freedom in nature.
Glueball operators will mix with quark operators with the same quantum numbers, so unquenched
calculations should include both glueball and quark disconnected diagrams in the same variational
calculation. Also high statistics are required. Although large N. arguments suggest that the widths
of glueballs should be small, the candidate states which may include glueball degrees of freedom
usually have large widths. Hence, specialized resonance techniques are required to study 0"+
states, for example.

It may be easier to consider the pseudo-scalar glueball, even though in the quenched theory
the 0~ glueball is the third heaviest glueball. The widths of the 1 and i’ mesons are 1.3 kev
and 0.2 MeV respectively, hence it is reasonable to neglect resonance effects. Also there are fewer
concerns about candidate molecules or tetraquarks as there with the flavour singlet 07 hadrons.

Some phenomenologically studies have suggested that in experiment the pseudo-scalar glue-
ball degrees of freedom are at a much lower mass than the quenched pseudo-scalar glueball mass [7].
The few previous lattice studies of unquenching the pseudo-scalar glueball have not seen much dif-
ference in the mass at a fixed lattice spacing [4, 8]. However, recently the JLQCD collaboration
have used the pseudo-scalar glueball interpolating operators to exact the mass of the " meson [9],
which suggests a strong mixing of the glueball with the n’.

There has been a big effort to determine the mixing angle between the 11 and 1 meson. For
example, the LHCb experiment have recently estimated 1 and )" mixing [10]. Some 1) — 1’ mixing
schemes also include the 0~ glueball. For example the KLOE experiment [11] wrote the physical
71’ meson state in terms of light quarks (| gg)) strange quarks (| 55) and glueball degrees of freedom
(| glueball)).

|n') =Xn | qq) + Yy | 55) + Zy | glueball) (2.1)

There are different parameterizations of the mixing angles (see [7] for example), but KLOE used
one with the constraint X%, + Y112 = 1 The KLOE experiment fitted X/, Yy, and Z;,/ to experimental
branching fractions and obtained ZTZI, =0.14+£0.04.

There have been a number of lattice QCD calculations of n’ — 1 mixing [12, 13, 14, 15, 16].
So it would be good to include the glueball interpolating operators as well, to try to determine



Glueball calculations Craig McNeile
Ensemble | S L’xT K W Us Us No.
D45.32sc | 2.10 | 323 x 64 | 0.156315 | 0.0045 | 0.0937 | 0.1077 | 1100
B55.32 1.95 | 323 x 64 | 0.161236 | 0.0055 | 0.135 0.17 | 2200
A80.24s | 1.90 | 24% x 48 | 0.163204 | 0.008 0.15 0.197 | 2433

Table 1: Parameters of twisted mass ensembles used in the glueball analysis. Further details are in the
papers [17, 18]

Zy. Although the variational basis used to study 1 and 1’ mesons can be extended to include
glueball interpolating operators. At this moment, it is less clear to us how to define the quantity
Zy in terms of lattice QCD correlators. Matrix elements of glueballs have been estimated using
quenched QCD [3].

We decided to use twisted mass configurations, from the European Twisted Mass collabora-
tion, with ny =241+ 1 sea quarks, because these had successfully been used to calculate the mass
of the 11 and 1" mesons [16], so we were hopeful that the statistics would be high enough to get
a signal with glueball interpolating operators. Three twisted mass ensembles were analyzed using
the glueball code developed in [19]. The parameters of the ensembles used are in table 1.
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Figure 1: Preliminary effective mass from the 0~ glueball interpolating operators from the B45.32sc
ensemble. Also included is the continuum limit glueball mass from quenched QCD [3]. Also the masses of
the 17 and ’ meson from ETMC [16] from the same ensemble are plotted.

Our glueball code includes an estimate of the projection of the state onto the unphysical toleron
state. Unfortunately, the B55.32 ensemble had a very strong projection of the ground state in the
pseudo-scalar channel to the toleron. The D45.32sc ensemble had a good overlap of the glueball
operator with the ground state in the pseudo-scalar channel. The physical box size of the D45.32sc
ensemble was 2.0 fm, compared to 2.5 fm for the B55.32 ensemble. Normally, the contribution of
the tolerons is a finite volume effect, so it is not clear why the toleron contribution is larger for the
ensemble with the larger physical size. In figure 1 we plot our preliminary results for the effective
mass from the 0~ glueball operators from the B45.32sc ensemble.
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B L’xT | No.
6.0625 | 16* | 11779
6.338 244 4485

Table 2: Parameters of quenched calculation using the Wilson gauge action

3. Open boundary conditions

One concern about Monte Carlo calculations is that the autocorrelation time is underestimated
and the resulting final errors on physical quantities are underestimated, or even worse, there are
systematic errors. Different physical quantities have different autocorrelation times. The topolog-
ical charge is one quantity that has been observed to have large autocorrelation effects which get
worse as the continuum limit is taken. Of particular concern are the results from the MILC col-
laboration [20], where the time series for the topological charge look worse as the lattice spacing
is reduced. However, as the MILC collaboration points out, the topological susceptibility from the
calculation agrees with theoretical expectations. The two finest lattice spacings simulated by the
MILC collaboration are crucial for reducing the errors on phenomenological quantities involving
heavy quarks, so it is important to study the issue.

Recently Liischer and Schaefer have proposed the use of open boundary conditions [21, 22]
to improve the sampling of the topological charge. McGlynn and Mawhinney have recently devel-
oped a simple model to explain the diffusion of topological charge and compared it to their lattice
data [23]. Full QCD calculations with open boundary conditions have already started [24].

What is not clear is whether the large autocorrelation on the topological charge is important
for spectral quantities, such as the masses of particles. Chowdhury et al. have recently made a
number of studies of the pseudo-scalar [25] and scalar [26] glueballs comparing periodic and open
boundary conditions. Within their large errors the glueball masses computed with periodic and
open boundary conditions are broadly consistent.

The errors on the mass of the 0™ glueball by Chowdhury et al. [25, 26] range from 6% to
17%. Given that many high precision lattice QCD calculations quote results at under 1%, then it
is desirable to have a more accurate calculation. The calculation of Chowdhury et al. only use one
glueball operator (smeared with the Wilson flow) for each channel, so one improvement would be
the use of a variational calculation.

In table 2, we report the parameters of the quenched QCD calculations, used to compute
the masses of the glueballs with open boundary conditions. The Wilson gauge action was used.
The configurations were generated with a standard update algorithm based on an admixture of
Cabibbo-Marinari heathbath and over-relaxed sweeps. In this calculation we use a variational
calculation, with the code, developed and applied for large N, calculations [19] and unquenched
calculations [4]. The use of open boundary conditions means that some of the time slices of cor-
relators have unphysical contributions. In our initial calculations we only used one or two time
slices per correlators, rather than average the correlator over all time slices as is normally done for
glueball calculation with periodic boundary conditions.

We use Sommer’s rp parameter to determine the the lattice spacing [28]. Our preliminary re-
sults in figure 2 seem to show the the results for glueball masses from open and periodic boundary
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Figure 2: Preliminary results for the masses of the 0", 0=+ and 2+ glueballs in units of ry computed
with open boundary conditions, versus the square of the lattice spacing in units of ry. We also include results
for the glueball masses from Chowdhury et al. [26, 25] with open boundary conditions. For comparison we
include the glueball masses computed with periodic boundary conditions (PBC) by Lucini et al. [27] and
the continuum limit results from Morningstar and Peardon [2].

conditions are consistent, but the errors still need to be reduced for a definite high precision conclu-
sion. The use of the variational code has not reduced the statistical errors over those of Chowdhury
et al. [26]. We have probably been too conservative in our choice of time slices to average over.
We are currently investigating other options.

4. Statistical distribution of glueball correlators

Calculations which include glueball degrees of freedom require large statistics. One concern
is that the probability distribution of the correlators has a “long tail.” This is a potentially generic
feature of disconnected diagrams. See for example the modeling of the correlators of the 1 meson
in [14].

In some physical calculations, such as the moments in heavy ion collisions, the probability
distribution of the data is important [29]. In standard lattice QCD calculations, the law of large
numbers makes the underlying distribution of correlators irrelevant, if the statistics are large enough
to be in the asymptotic regime. One motivation for studying the statistical distribution of the
glueball correlators is the possible use of the techniques developed Endres et al. [30] for many
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Figure 3: Some 0~ glueball correlators, for a specific operator, from the B55.32 twisted mass ensemble.
The different graphs are for the time-slices (1 to 3) and blocking levels (1 to 3).

body simulations, where a “filter like procedure” is applied to dramatically reduce the statistical
errors.

In figure 3 we plot the histograms of some 0~ glueball correlators from the B55.32 twisted
mass ensemble. Also included is a fit with a Gaussian fit model made with the the R statistical
system [31]. The Gaussian distribution gives a good description of the correlator.

5. Conclusions

We have started a project to study whether pseudo-scalar glueball interpolating operators
strongly couple to the " meson. We have presented preliminary results for the effects of open
boundary conditions on the three lightest glueballs.
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