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For reliable comparison of the standard model prediction to the muon g−2 with its experimental

value, the hadronic light-by-light scattering (HLbL) contribution must be calculated by lattice

QCD simulation. HLbL contribution has many types of disconnected-type diagrams. Here, we

start with recalling the point that must be taken care of in every method to calculate them by

lattice QCD, and present one concrete method called nonperturbative QED method.
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1. Introduction

The hadronic light-by-light scattering (HLbL) contribution, aµ(HLbL), will leave a contro-

versial uncertainty in the standard model prediction aµ(th) to the muon g− 2, unless it can be

calculated by means of lattice QCD simulation.

Table 1: Comparison of the dis-

crepancy between theory and exper-

iment with HLbL contribution. All

are given in units of 10−11.

aµ(exp)−aµ(th) 249 (87)

aµ(HLbL) 116 (40)

δaµ(next exp) O(1)

The reason is as follows. While the hadronic vacuum

polarization (HVP) contribution to the muon g−2 can resort

to the experiments to evaluate the relevant QCD dynamics,

aµ (HLbL) requires purely theoretical consideration. Thus

far, it has been only estimated according to the models with

several hadrons such as pions as dynamical variables. The

value of aµ(HLbL) in Tab. 1 was obtained as such [1]. In-

cluding it as the part of aµ(th), we observe the discrepancy

between the experiment and aµ(th), which is comparable in size with aµ(HLbL). Actually, no

proof supporting the validity of the low energy approximation to aµ(HLbL) exists. There is thus a

potential possibility of significance of QCD dynamics that cannot be captured by hadron models.

Therefore, the first-principle calculation with quarks and gluon as dynamical variables, such as

lattice QCD simulation, is crucial to provide aµ(HLbL) with manageable theoretical uncertainty.

Recently, feasibility was demonstrated to compute the HLbL contribution by the lattice sim-

ulation [2], and more efficient method is investigated in Ref. [3]. Mainz group has attempted to

calculate the HLbL amplitude [4]. All of those works, however, focus on so-called connected-type

diagram shown in Fig. 1, where all of four electromagnetic (EM) vertices lie on a single quark loop.

µ

QCD
+ 5 permutations of QED vertices ( ) on the muon side

Figure 1: Connected-type HLbL diagrams. Each quark line under the QCD average represents the inverse

of the quark Dirac operator D[U ] for a given QCD configuration U . The diagrams with O(a) local QED

vertices are not shown here.

Here we turn our attention to the disconnected-type HLbL contribution whose details are pre-

sented in Sec. 2. We first see the point that must be called into account in every method to compute

it by lattice simulation in Sec. 3. In Sec. 4, we also present one concrete method with such a point

taken into account by remedying the one proposed in Ref. [5].

2. Classification of disconnected-type HLbL diagrams

The lattice QCD simulation tempts us into classifying the diagrams according to the way

how four EM vertices are distributed over quark loops. It turns out that there are seven types of

disconnected-type diagrams in total. The diagrams of type (3E , 1) in Fig. 2 are those with three EM

vertices on a quark loop, one of which couples to the external photon, and one internal EM vertex

on the other loop. The diagrams of type (1E , 3) in Fig. 3 differ from those of type (3E , 1) because
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QCD QCD QCD

QCD QCD QCD

Figure 2: (3E , 1)-type diagrams. The diagrams with O(a) local QED vertices are not shown.

QCD QCD

Figure 3: (1E , 3)-type diagrams

QCD

con

QCD

con

QCD

con

Figure 4: (2E , 2)-type diagrams

there is no internal EM vertex on the quark loop with the external EM vertex. The diagrams of type

(2E , 2) in Fig. 4 1 are also the disconnected-type diagrams having just two quark loops with two

internal EM vertices on each. The diagrams in Figs. 5 and 6 are those having three quark loops

with at least one EM vertex on each. The diagram in Figs. 7 has four quark loops with just one EM

vertex on each.

1The meaning of the superscript “con” attached to the average symbol will be clarified in Sec. 3.
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QCD

con

QCD

con

QCD

con

Figure 5: (2E , 1, 1)-type diagrams

QCD

con

QCD

con

QCD

con

Figure 6: (1E , 1, 2)-type diagrams

QCD

con

Figure 7: (1E , 1, 1, 1)-type diagrams

3. Disconnected component in the correlation function of four EM currents

Lattice QCD simulation may enable to compute the vacuum expectation value (VEV) of four

hadronic EM currents jµ(x)

〈

jµ(1)
(x(1)) jµ(2)

(x(2)) jµ(3)
(x(3)) jµ(4)

(x(4))
〉

QCD

=
1

ZQCD

∫

dU

∫

dqdqe−SQCD[U,q,q] jµ(1)
(x(1)) jµ(2)

(x(2)) jµ(3)
(x(3)) jµ(4)

(x(4)) . (3.1)

This VEV, however, contains not only the contribution from the field-theoretically connected dia-

grams, but also that from the field-theoretically disconnected diagrams. Here, a field-theoretically
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disconnected diagram is a Feynman diagram consisting of more than one nontrivial connected sub-

graph as a graph. We shall refer to the contribution of field-theoretically disconnected (connected)

diagrams as the disconnected (connected) component of that contribution. If the connected com-

ponent of the QCD average of A is denoted by 〈A 〉con
QCD, the quantity relevant to the HLbL is

〈

jµ(1)
(x(1)) jµ(2)

(x(2)) jµ(3)
(x(3)) jµ(4)

(x(4))
〉con

QCD
, which differs from the one in Eq. (3.1) by the sum

of three terms each of which is a product of two currents,
〈

jλ (x) jρ(y)
〉

QCD
.

Basically, lattice QCD simulation does not allow us to evaluate 〈A 〉con
QCD directly because con-

nectivity is the attribute of each Feynman diagram with quarks and gluons. The best we can do is to

compute 〈A 〉QCD and its disconnected component 〈A 〉dis
QCD to get 〈A 〉con

QCD = 〈A 〉QCD −〈A 〉dis
QCD

indirectly.

If the VEV of four EM currents in Eq. (3.1) couples to the muon via three virtual photons, its

disconnected component gives rise to the HVP contribution with the O(α) renormalization of EM

charge due to QCD. Any calculation of the HVP contribution with the renormalized EM charge

contains such a contribution implicitly. To avoid double counting, we must thus explicitly sub-

tract such an O(α3) HVP contribution, which is henceforth called unwanted contribution, in every

method based on lattice QCD. Subtraction is required in practice to compute the disconnected-type

diagrams; (2E , 2), (1E , 1, 2), (2E , 1, 1) and (1E , 1, 1, 1) in our classification scheme.

4. Nonperturbative QED method for full HLbL contribution

Table 2: Emergence of degener-

acy. C, say, denotes MC −SC.

C+C′ D

4E 3 0

(1E ,3) 0 3

(3E ,1) 2 1

(2E ,2) 1 2

(1E ,1,2) 0 3

(2E ,1,1) 1 2

(1E ,1,1,1) 0 3

The nonperturbative QED method we propose here to

compute full HLbL contribution is given by

1

3
{(MC −SC)+ (MC′ −SC′)+ (MD −SD)−KD} , (4.1)

where the terms MC, SC, MC′ and SC′ are defined in Fig. 8,

and MD, SD and KD in Fig. 9. The individual terms involve

the averages with respect to (QCD+QED) for light quark sys-

tem. Note that each muon line in Figs. 8 and 9 denotes the

inverse of muon Dirac operator in the QED configuration gen-

erated by such (QCD+QED) system. We multiply 1
3

to the

quantity in the bracket in Eq. (4.1) because individual 8 types

of HLbL diagrams emerge with triplicate degeneracy as in Tab. 2 [5].

The term (−KD) in Eq. (4.1) is the one added here to subtract the unwanted O(α3) HVP

contribution contained in the other terms. To construct KD, we prepare two sets of (QCD, QED).

Practically, they may be two independent important samples of a pair of (U, A) generated by dy-

namical (QCD+QED) simulation. The quark in the upper loop on the right-hand side of Fig. 9 is

charged only with respect to the first (QCD, QED) and the one in the lower loop only with respect

to the second (QCD, QED), while the muon is charged with respect to both QEDs.

We discuss how subtraction of unwanted contributions is realized by (−KD). For that purpose,

it may be helpful to observe the situation by focusing on a (2E , 2)-type diagram. It is generated

in three ways as shown in Fig. 10 ; each diagram in Fig. 10 contains the unwanted contribution,

i.e. O(α3) HVP contribution. Note that the HVP contribution coming from MC can be canceled
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MC =

QCD+QED

SC =

QCD+QED

QCD+QED

MC′ =

QCD+QED

SC′ =

QCD+QED

QCD+QED

Figure 8: The terms MC, SC, and MC′ , SC′ with O(a) QED vertices.

MD =

QCD+QED

SD =

QCD+QED

QCD+QED

KD =

D

[

U(1) e
−i Qq eA(1)

]−1

D

[

U(2) e
−i Q

q′ eA(2)

]−1

D

[

e
−i Qµ eA(1) e

−i Qµ eA(2)
]−1

↑ ↑
(

U(1), A(1)

)

,
(

U(2), A(2)

)

Figure 9: The terms MD, SD and KD.

QCD QCD QCD

Figure 10: An identical diagram of (2E , 2)-type is generated in three ways from MC (left) and MD (mid-

dle, right). The red propagators and vertices are generated by the ensemble average of (QCD+QED) .

by that supplied from SC, but the other two survive. The essential difference between them is as

follows. The HVP contribution canceled by SC, SC′ or SD contains one HVP function entirely

supplied from QED average (QCD average of fully red quark loop), but the uncanceled one does

not. The same is true for the other disconnected-type diagrams. If the full HVP function is denoted

as in Fig. 11, the unwanted contributions that survive in the absence of the last term in Eq. (4.1) can

be summarized in Fig. 12, where each diagram of identical topology turns out to appear exactly

twice. One can show that a set of the O(α3)-diagrams generated by KD exactly coincides with that

in Fig. 12 with the same degeneracy, verifying that subtraction is realized in the nonperturbative

QED method.
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QCD =
QCD

+
QCD

Figure 11: Full HVP function. The diagrams with O(a) QED vertices are not shown.

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

QCD

Figure 12: Summary of O(α3) unwanted diagrams.

5. Summary

Here, we remarked that, to avoid double counting in the prediction of the muon g−2, we must

explicitly subtract O(α3) HVP contributions in every method for the computation of full HLbL

contribution. We presented an idea (4.1) for the concrete method, which is based on the dynamical

(QCD+QED) simulation as done in Ref. [6], though the results in Ref. [3] encourage to develop

alternative methods without stochastic realization of virtual photons.
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