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Parameter 48I 64I
L3×T ×Ls 483×96×24 643×128×12

aml 0.00078 0.000678
ams 0.0362 0.02661

a−1 / GeV 1.730(4) 2.359(7)
L / fm 5.476(12) 5.354(16)

mπ / MeV 139.2(4) 139.2(5)
mK / MeV 499.0(12) 507.6(16)

mπL 3.863(6) 3.778(8)

Table 1: Ensembles used in this study [7].

1. Introduction

The anomalous magnetic moment of the muon, aµ , is one of the most accurately determined
quantities in particle physics, with an accuracy of the order of one part per million [1]. There is cur-
rently a 3σ to 4σ tension between the experimental and theoretical determinations of this quantity.
The new muon g−2 experiment at Fermilab is expected to reduce the uncertainty from experiment
by a factor of four, making a reduction in the theoretical error desirable. The leading-order (LO)
hadronic contribution is the main source of this uncertainty. In addition, current estimates of this
value are computed using a σ (e+e−→ hadrons) data [2, 3], making a first-principles computation
desirable. Here we present the computation of the connected strange contribution to this quantity.
We use a variety of analysis techniques in order to test both the techniques and their effect on the
final value of as

µ .
The LO strange hadronic contribution, as

µ , can be computed as follows [4]:

as
µ =

(
α

π

)2 ∫ ∞

0
dQ2

Π̂
(
Q2) f

(
Q2) , (1.1)

where α is the QED coupling, Π̂(Q2) = 4π2
(
Πs(Q2)−Πs(0)

)
is the infra-red subtracted hadronic

vacuum polarization (HVP) scalar function and f is the integration kernel derived in perturbation
theory, with a singularity at Q2 = 0. The resulting integrand is highly peaked near Q2 ≈ m2

µ/4,
meaning that the final value of aµ is highly sensitive to variations in the values of Π̂(Q2).

Our analysis can be broadly divided into two strategies. The first makes use of the hybrid
method outlined in [5]. The second uses continuous momenta in the lattice Fourier transform to
compute the scalar HVP function directly at arbitrary momentum [6].

2. Simulation Details

Simulations have been performed on the two 2+1 flavour domain wall fermion (DWF) ensem-
bles with near-physical pion masses described in [7]. For convenience we summarize the properties
of these ensembles in Table 1.

We compute the lattice vacuum polarisation, Cµν , using Z2 wall sources and Möbius domain
wall fermions, with a local vector current at the source and the DWF conserved vector current at
the sink, i.e.:

Cµν(x) =
ZV

9
〈
Vµ(x)Vν(0)

〉
, (2.1)
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where ZV is the vector renormalization constant, a is the lattice spacing, Vν is the local vector
current and we define the conserved Möbius DWF vector current Vµ(x) as described in [7].

To account for a small mistuning in the strange quark mass on each ensemble, we performed a
set of partially quenched measurements using the physical value of the strange quark mass. These
were performed in addition to the unitary measurements [7].

3. Analysis

We implemented a variety of analysis strategies in order to ascertain the dependence of aµ on
the analysis technique.

3.1 HVP Computation

We can compute the HVP tensor in momentum space by performing a Fourier transform of
the position space HVP correlator, i.e.:

Πµν (Q) = ∑
x

e−iQ·xCµν(x)−∑
x

Cµν (x) , (3.1)

where the second summation effectively subtracts the zero-mode [8]. In the infinite volume limit
this term is zero, and subtracting it greatly reduces the noise in the low-Q2 region. For the lowest
momentum value of Π

(
Q̂2
)

the improvement in the statistical error is approximately a factor of
five.

We then perform a tensor decomposition of the HVP tensor, so that it may be related to the
scalar HVP function as follows:

Πµν

(
Q̂
)
=
(
δµνQ̂2− Q̂µQ̂ν

)
Π
(
Q̂2)+ · · · , (3.2)

where the ellipis denotes contributions from Lorentz symmetry breaking, discretisation and finite
volume effects and Q̂ = 2sin(Q/2) is the momentum of the intermediate photon. We remove a
potential source of lattice cut-off effects by considering only the diagonal component of the HVP
tensor where Q̂µ = 0 [9].

3.2 Hybrid Method

We used the hybrid method as described in [5]. This method consists of partitioning the
integrand in (1.1) into three non-overlapping adjacent regions using cuts at low- and high-Q2. The
integrand is then computed for the three regions in different ways. The low-Q2 region is integrated
by modelling Π(Q2) to extrapolate to Π(0), which is subtracted to compute Π̂(Q2). This result is
then combined with the kernel f (Q2) to produce the integrand of interest, which is then integrated
numerically. The mid-Q2 region is integrated directly by multiplying the lattice data by f (Q2)

before using the trapezium method. Finally, the high-Q2 region is integrated by using the result
from perturbation theory [10, 5]. Restricting the use of an HVP parameterisation to the low-Q2

region allows us to minimise systematic effects [5].
We use two classes of parameterisations for the low-Q2 region when performing the integral

in Equation (1.1): Padé approximants and conformal polynomials. The Padé approximants are
written as follows [11]:

Rmn
(
Q̂2)= Π0 + Q̂2

(
m−1

∑
i=0

a2
i

b2
i + Q̂2

+δmnc2

)
, n = m, m+1, (3.3)
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where ai, bi, Π0 and possibly c are parameters to be determined.
The conformal polynomials are written as follows [5]:

PE
n
(
Q̂2)= Π0 +

n

∑
i=1

piwi, w =
1−
√

1+ z
1+
√

1+ z
, z =

Q̂2

E2 , (3.4)

where pi and Π0 are parameters to be determined. The parameter E is the two-particle mass thresh-
old.

We use two techniques for constraining the low-Q2 models: χ2 minimisation and continuous
time moments [12]. The χ2 minimization involves a fit where the covariance matrix is approx-
imated by its diagonal, i.e. the fit is uncorrelated. This technique lends weight to points in the
computed HVP with a smaller statistical error at larger values of Q2.

The moments method defines a relationship between the HVP scalar function and the lattice
space-averaged current-current correlator, Cµµ(t).

∑
t

e−iQ0tCµµ(t) = Q̂2
0Π
(
Q̂2

0
)

(3.5)

Taking the nth derivate with respect to Q̂0 at Q̂0 = 0 allows us to write

(−1)n
∑

t
t2nCµµ(t) =

∂ 2n

∂Q2n
0

(
Q̂2

0Π
(
Q̂2

0
))∣∣∣∣

Q0=0
(3.6)

We then insert one of the above analytical ansätze for the HVP scalar function, setting up a system
of equations that can be solved to determine the model parameters.

The moments method uses continuous derivatives, meaning an infinite volume is assumed.
When performing the moments method, we use a model that is a function of Q̂2. However, within
the moments method, derivatives are taken with respect to Q0 and not Q̂0. Within the determination
of the model parameters, the low-Q2 cut is not used as an input for this technique, so the resulting
parameters do not depend on the low cut used in the hybrid method [12].

3.3 Continuous Momenta

One alternative to the hybrid method is to compute the HVP directly at an arbitrary mo-
mentum by performing the Fourier transform at said momentum [6]. Whereas before we used
Q0 =

2π

T n0 with n0 ∈ Z, −T/2≤ n0 < T/2, we now let n0 lie anywhere on the half-closed interval
[−T/2,T/2). This allows for the computation of as

µ without using a parameterisation of the HVP.
Because we are computing the HVP tensor for momenta that are non-Fourier modes on the

lattice, there may be some finite volume errors associated with this method. However, it can be
shown that these are exponentially suppressed by the lattice volume [6]. Using this technique, we
compute the HVP at arbitrary momenta up to some high cut, after which the perturbative result is
used.

4. Results

We used nine different parameterisations of the HVP when performing the hybrid method:
P0.5GeV

2 , P0.5GeV
3 , P0.5GeV

4 , P0.6GeV
2 , P0.6GeV

3 , P0.6GeV
4 , R0,1, R1,1 and R1,2. We scan three low cuts and

three high cuts: 0.5GeV2, 0.7GeV2 and 0.9GeV2, and 4.5GeV2, 5.0GeV2 and 5.5GeV2. We used
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the same high cuts when computing as
µ using continuous momenta, where we used a step size of

0.005 for nt .
Figure 1 illustrates an example extrapolation to the continuum and the physical strange quark

mass. We perform a two-dimensional linear fit in a2 and the relative deviation of the strange mass
from the physical value. We do this because domain wall fermions are O(a) improved, and in the
latter case we assume a linear dependence of as

µ on the strange quark mass. In this case we used the
R0,1 parameterisation, which was constrained using an uncorrelated χ2 minimisation. The low cut
in this case was 0.5GeV2 and the high cut was 4.5GeV2. The effect of the strange quark mistuning
is clearly visible, with the final value of as

µ shifting from approximatley 50×10−10 to 53.0×10−10.

(a) (b)

Figure 1: Continuum and strange quark mass extrapolations. In the right-hand set of plots we have
subtracted the effects from the strange quark mass (top) and lattice spacing (bottom).

Figure 2 illustrates the variation of as
µ as the low cut in the hybrid method is varied. All the

computed values of as
µ agree within statistics, and most of the values are in strong agreement with

one another. Furthermore, our results agree with those of HPQCD [12] and ETMC [13] to within
statistics. The models with the fewest parameters, i.e. P0.5GeV

2 , P0.6GeV
2 and R0,1, deviate slightly

from 53.0× 10−10. This is more apparent in the case where the models are constrained with χ2

fits. This is likely a result of the fit favouring data at larger Q2, where the statistical error is smaller,
whilst the moments use an expansion around Q2 = 0, favouring data around this point.

Figure 3 demonstrates the various values of aµ computed in this analysis. Good agreement is
found between all values of as

µ . This suggests that the systematic error resulting from the various
analysis techniques is small.

5. Summary

We have computed the strange contribution to the anomalous magnetic moment of the muon
using domain wall fermions with physical quark masses. We used a variety of analysis techniques,
in particular the hybrid method proposed in [5] and continuous momenta [6]. Our final values of
as

µ show good agreement with each other, suggesting that the systematic error from the choice of
analysis technique is small. Furthermore, we find good agreement with the work of HPQCD [12]
and ETMC [13].

We are now in the process of finalising the analysis of possible sources of systematic error,
particularly finite volume effects. We are simultaneously extending our analysis to the connected
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(a) (b)

Figure 2: Computed values of as
µ against various low cuts for fits (left) and moments (right).

Figure 3: Errorbar plot illustrating the various values of aµ computed in this analysis.

light contribution contribution to aµ . In the future we plan to account for the effect of disconnected
diagrams.
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