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We investigate finite-volume effects in the hadronic vacuum polarization, with an eye toward the
corresponding systematic error in the muon anomalous magnetic moment. While it is well known
that leading-order chiral perturbation theory does not provide a good description of the hadronic
vacuum polarization, it turns out that it gives a much better representation of finite-volume effects.
Indications are that finite-volume effects cannot be ignored when the aim is a few percent level
accuracy for the hadronic contribution to the muon anomalous magnetic moment, even when
mπ L∼ 4 and mπ ∼ 200 MeV.
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Figure 1: Typical fits (blue curves) to lattice data (red points) for the integrand of Eq. (1.1) in arbitrary units
(the horizontal axis is q2 in GeV2). The figure on the left shows data with statistics typical of 2012 [3], the
figure on the right shows data with statistics typical of 2015 (unpublished).

1. Introduction

The leading-order hadronic contribution to the muon anomalous magnetic moment g = 2(1+
aµ) is given by the expression

aHVP
µ =

(
α

π

)2 ∫ ∞

0
dQ2 f (Q2) [Π(Q2)−Π(0)] , (1.1)

in which f (Q2) is a known weight function which depends on the muon mass, and Π(Q2) is defined
by

Πµν(Q) =
(
δµνQ2−QµQν

)
Π(Q2) , (1.2)

the (euclidean) hadronic vacuum polarization [1, 2]. The integrand of Eq. (1.1) is peaked around
Q2 ∼m2

µ/4, and shown in Fig. 1. The figure on the right (which was obtained with AMA improve-
ment [4]) shows that dramatic improvement with statistics was made over the last few years. But
the figures also show that aHVP

µ is very sensitive to the very-low Q2 region. Thus, in addition to
the need for more data with smaller errors at low Q2, it is also important to understand systematic
effects in detail. Very small changes in Π(Q2) at low Q2 can have dramatic effects on the value of
aHVP

µ . Here, we will consider the impact of finite-volume effects on aHVP
µ , for the case of a volume

L3×T , with periodic boundary conditions, L the spatial extent, and T the temporal extent, with
L 6= T .

2. Theoretical considerations

A first observation is that in finite volume, the Ward–Takahashi identity does not exclude that
Πµν(0) does not vanish, because of the discrete nature of momenta in a finite volume.1 Further-
more, it is reasonable to expect that the hadronic vacuum polarization, with its logQ2 behavior, is
more singular for low momenta in a finite volume than in infinite volume. This suggests subtracting

1This observation, as well as various other observations made below, were also made in Ref. [5].
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Figure 2: Dependence on volume of aHVP
µ , from Ref. [6]. The black points have been obtained without

the subtraction of Πµν(0), the blue points with such a subtraction. These data have a = 0.104 fm, mπ =

292 MeV, and 3.7≤ mπ L≤ 12.3. For more details, see Ref. [6].

Πµν(0) from the vacuum polarization at non-zero Q. We thus define

Πµν(Q) ≡ PT
µκ(Q)(Πκλ (Q)−Πκλ (0))PT

λν
(Q) , (2.1)

PT
µν(Q) = δµν −

QµQν

Q2 .

We chose to project the subtracted vacuum polarization so that it satisfies the Ward–Takahashi
identity, but this turns out not to be essential in what follows.

This idea has been considered before. For instance, in Ref. [6] a study was made of the effect
of this subtraction at different values of the volume; Fig. 2 shows some of the results. It is clear
that the subtraction reduces finite-volume effects significantly, at least for the choice of parameters
that were used in Fig. 2.

On the lattice, rotational symmetry is broken by both the lattice itself, and by the shape of
the finite volume. When rotational symmetry is broken, the Ward–Takahashi identity allows for
tensor structures other than Q2δµν and QµQν in Πµν(Q), such as for instance δµν ∑κ Q4

κ and
Q3

µQν +QµQ3
ν . However, because of dimensions, such terms have to appear with coefficients

with mass dimension −2. That implies that the coefficients have to contain a power a2, because
the other scales in the theory such as L and mπ would have to appear as L2 or m−2

π , which is clearly
impossible. Since we are interested in the low-Q2 region, we will assume that, for such momenta,
scaling violations can be ignored. It follows that Πµν(Q) has to be of the form (1.2), with the
proviso that, since the unbroken group of rotations are just the spatial cubic rotations by 90 de-
grees, there is more than one irreducible representation (irrep) of the cubic group hiding in this
decomposition. In particular, we may project onto the irreps

A1 : ∑
i

Πii and Π44 , (2.2)

T1 : Π4i = Πi4 ,

T2 : Πi6= j = Π j 6=i ,

E : Π11−∑
i

Πii/3 ,Π22−∑
i

Πii/3 ,
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and extract a scalar function Π(Q2) from each of these. Since cubic rotations do not transform the
five different irreps into each other, these scalar functions do not have to be equal. They only
become equal to each other in the limit L, T → ∞.2 We will label these five different scalar
functions as ΠA1 (from ∑i Πii), ΠA44

1
(from Π44), ΠT1 , ΠT2 and ΠE .

Assuming that finite-volume effects are dominated by pions, one may also study them in chiral
perturbation theory (ChPT). To leading order in ChPT, the hadronic vacuum polarization due to
pions in a finite periodic volume L3×T is given by

ΠChPT
µν (Q) = 5

9 e2

(
4 1

L3T ∑p
sin(p+Q/2)

µ
sin(p+Q/2)

ν

(2∑κ (1−cos pκ )+m2
π )(2∑κ (1−cos(p+Q)κ )+m2

π )
(2.3)

−2δµν
1

L3T ∑p

(
cos pµ

(2∑κ (1−cos pκ )+m2
π )

))
,

where e is the electric charge of the electron, and the sums are over quantized momenta pµ =

2πnµ/Lµ , with nµ integers, and L1 = L2 = L3 = L and L4 = T . One can show explicitly from this
expression that ΠChPT

µν (0) does not vanish, but rather, that it is exponentially suppressed with mπL.
In our explorations below, we will compute ΠChPT

µν (Q) omitting the factor 5e2/9.
It is rather well known that leading-order ChPT does not give a good description of vector

and axial-vector two-point functions already for very small values of Q2.3 The intuitive reason for
this is that the ρ and a1 resonances make significant contributions to these two-point functions,
whereas leading-order ChPT only sees the pions (vector resonances contribute only through low-
energy constants at higher order). However, here we are only interested in the difference between
the vacuum polarization in finite and infinite volume. Since for large enough values of mπL these
differences are exponentially small in the ratio of the linear volume and hadronic Compton wave
lengths, it is reasonable to assume that these differences are dominated by pions, and thus well
described by leading-order ChPT. We will investigate this in what follows.

3. Comparison between lattice data and theory

Figure 3 shows a comparison between ChPT, using Eq. (2.3), and lattice data. The lattice
points were computed using the MILC asqtad ensemble with 1/a = 3.34532 GeV, mπ = 220 MeV,
L = 64a and T = 144a, which implies mπL = 4.2. We find that the subtraction of Πµν(0) only
makes a significant difference for ΠA1 (as one might expect). The left panel shows the effect of
the subtraction itself, while the right panel shows the difference between two different irreps. We
see that there is good agreement between ChPT and lattice data, implying that leading-order ChPT
does a reasonably good job of describing finite-volume effects. Similar results are obtained for
differences between other irreps. Another important conclusion is that the lattice data are precise
enough to be able to discern finite-volume effects, thanks to the use of all-mode averaging [4],
which was employed to get the data shown. To illustrate this observation, we show in Fig. 4 the
lattice data points for ΠA1(Q

2) and ΠA44
1
(Q2).

2The Ward–Takahashi identity implies certain relations between the five irreps, for each choice of momentum.
3See, for example, Refs. [7, 8].
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Figure 3: Left panel: difference between the subtracted (ΠA1(Q
2)) and unsubtracted (ΠA1(Q

2)) A1 vacuum
polarizations. Right panel: difference between the subtracted (ΠA1(Q

2)) and unsubtracted (ΠA44
1
(Q2)) A44

1
vacuum polarizations. Red points are computed in ChPT; blue points are lattice data.
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Figure 4: Lattice data for ΠA1(Q
2) and ΠA44

1
(Q2).

In Fig. 5, we compare ChPT results for the A1, A44
1 and infinite-volume vacuum polarizations,

with the unsubtracted A1 case on the left, and the subtracted A1 case on the right. Infinite-volume
points were computed by replacing L→ 2L and T → 2T in Eq. (2.3).4 As mentioned before, there
is very little difference between the subtracted and unsubtracted values for ΠA44

1
(Q2), and similar

plots for the irreps T1,2 and E look very similar. As one sees by comparing the left and right
panels, the effect of the subtraction for the A1 irrep is dramatic at the lowest values of Q2, and
the subtraction brings ΠA1(Q

2) much closer to the infinite-volume result. Thus, ChPT provides a
theoretical explanation of this effect. Moreover, it is interesting that after the subtraction, the A1

and A44
1 vacuum polarizations straddle the infinite-volume result. The same thing happens if we

replace A44
1 by any of the other irreps T1,2 and E.

4. Effects on aHVP
µ

We now consider what the small, but significant finite-volume effects in Π(Q2) imply for aHVP
µ .

4Since the finite-volume effects are exponentially small, the difference between the black points and the real infinite-
volume values is not visible on the scale of Fig. 5.
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Figure 5: Left panel: ChPT computation of (unsubtracted) ΠA1(Q
2) (red points), (unsubtracted) ΠA44

1
(Q2)

(blue points) and the “infinite-volume” result (black points). Right panel: ChPT computation of (subtracted)
ΠA1(Q

2) (red points), (unsubtracted) ΠA44
1
(Q2) (blue points) and the “infinite-volume” result (black points).

We define

aHVP
µ (Q2

max) =
(

α

π

)2 ∫ Q2
max

0
dQ2 f (Q2) [Π(Q2)−Π(0)] , (4.1)

differing from aHVP
µ because of the choice of upper limit of the integral. Below we will choose

Q2
max = 1 GeV2, to diminish the effect of different systematic errors at large momenta. Close to

100% of the light-quark contribution to aHVP
µ comes from the region below Q2 = 1 GeV2 [9].

We first consider [0,1] Padé fits [3] on the interval below 1 GeV2, using the A1 or A44
1 data

points only. We find

aHVP
µ,A1

(1 GeV2) = 8.4(4)×10−8 , (4.2)

aHVP
µ,A44

1
(1 GeV2) = 9.2(3)×10−8 .

Using instead a quadratic conformally-mapped polynomial [9], we find

aHVP
µ,A1

(1 GeV2) = 8.4(5)×10−8 , (4.3)

aHVP
µ,A44

1
(1 GeV2) = 9.6(4)×10−8 .

While one may argue that these fit functions are not adequate to reach the desired sub-percent level
accuracy, the point here is that the Padé and conformally-mapped polynomial fits give results that
are consistent within errors (of order 4%). The difference between the A1 and A44

1 fits, however, is
about 9–13% larger than the errors shown in Eqs. (4.2,4.3), and consistent between the two types
of fits. Since the only difference is the irrep onto which we projected the lattice data, we conclude
that the 9–13% difference is a finite-volume effect. A phenomenological analysis of finite-volume
effects found values consistent with our estimate [10].

5. Conclusion

It is difficult to perform a lattice computation of aHVP
µ with sub-percent level accuracy because

of the nature of the integrand in the integral defining this quantity, as demonstrated in Fig. 1. The
integrand is strongly peaked at Q2 ≈ m2

µ/4, values of the momenta which are hard to reach on the
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lattice. Consequently, even small variations of the vacuum polarization itself, due to systematic
errors, get magnified to be large variations on aHVP

µ . In this talk, we demonstrated that this is also
true for the systematic error due to the use of a finite volume.

Together with the conclusions reached in Refs. [3, 9, 11], the picture that emerges is that for
good control of the systematic errors, one needs a series of model-independent fit functions to the
lattice data for Π(Q2), approximately physical pion masses, and control over finite-volume effects.

Finally, we note that finite-volume effects are equally likely to affect other methods to con-
struct smooth interpolations of the lattice data for Π(Q2), such as the moment method proposed
in Ref. [12]. In particular, in a finite volume, the t2 moment of the vector current correlator is not
equal to Π(0), but instead to a linear combination of values at non-zero momenta [13]:

Π(0)→ ∑
n6=0

4(−1)n
Π

(
2πn
T

)
. (5.1)

We do not know of any argument that this linear combination of values of Π(Q2) is less sensitive
to finite-volume effects than any of these values alone.
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