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1. Introduction

Generalized Parton Distributions (GPDs) were introduced in the ’90s [1, 2]. They describe the
inner structure of the nucleon. The starting point is the parametrization of the off-diagonal matrix
elements of the light cone operator [3, 4, 5, 6]

〈N(P′)|Oq(x) |N(P)〉 twist 2
=

1
2

u(P′)
[

Hq(x,ξ , t) /n+Eq(x,ξ , t)
iσ µνnµ∆ν

2mN

]
u(P), (1.1)

Oq(x) =
1
2

+∞∫
−∞

dλ

2π
eiλx

ψq

(
−λ

2
n
)
/nP exp

−ig

+ λ

2∫
− λ

2

dα Aβ (α n)nβ

ψq

(
+

λ

2
n
)
. (1.2)

The path ordering operator P in eq. (1.2) ensures gauge invariance. Further, it depends on the
momentum fraction x and the quark flavor q. The spinors ψ(·) and ψ(·) are parametrized along the
light cone (n2 = 0) by the parameter λ .

Key ingredients of the parameterization of the matrix element in eq. (1.1) are the constraint
given by the Lorentz structure and the definitions of Hq(·) and Eq(·), which depend on the momen-
tum fraction x and the kinematic variables ξ =−nµ∆µ/2 and t = ∆2 with ∆µ = P′µ −Pµ .

The direct calculation of GPDs by virtue of lattice QCD is not possible since Oq(x) is a light
cone operator. However, one can expand eq. (1.2) in towers of local twist two operators

〈N(P′)|ψqγ
{µ i
↔
D

µ1
· · · i

↔
D

µn}
ψq |N(P)〉=

= u(P′)
{ n

∑
i=0

δi,even γ
{µ

∆
µ1 · · ·∆µi Pµi+1 · · ·Pµn} Aq

n+1,i(t)

+
−i
2m

n

∑
i=0

δi,even ∆ασ
α{µ

∆
µ1 · · ·∆µi Pµi+1 · · ·Pµn} Bq

n+1,i(t)

+
1
m

δn,odd ∆
µ · · ·∆µn Cq

n+1(t)
}

u(P). (1.3)

The coefficient functions Aq
n+1,i(t), Bq

n+1,i(t) and Cq
n+1(t) are so called (vector) Generalized Form

Factors (GFFs) which are related to (vector) GPDs by

∫ +1

−1
dx xn Hq(x,ξ , t) =

n

∑
i=0

δi,even(−2ξ )iAq
n+1,i(t)+δn,odd(−2ξ )n+1Cq

n+1(t), (1.4)

∫ +1

−1
dx xn Eq(x,ξ , t) =

n

∑
i=0

δi,even(−2ξ )iBq
n+1,i(t)−δn,odd(−2ξ )n+1Cq

n+1(t). (1.5)

The knowledge of Au−d
2,0 (t), Bu−d

2,0 (t) is of particular interest since they encode the total angular
momentum

Ju−d =
1
2

(
Au−d

2,0 (t = 0)+Bu−d
2,0 (t = 0)

)
. (1.6)

Moreover, we determine Ãu−d
2,0 (t) and B̃u−d

2,0 (t) which are the GFFs corresponding to the axial GPDs.
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2. Lattice set-up

We use N f = 2 mass-degenerate non-perturbatively improved Wilson-Sheikholeslami-Wohlert
fermions with Wilson glue. The necessary gauge configurations were produced by the QCDSF col-
laboration and RQCD (Regensburg QCD). The lattice spacing was set as described in [7]. To en-
sure ground-state dominance we use optimized Wuppertal smearing as described in [8]. All results
are computed at a renormalization scale µ = 2GeV using non-perturbatively improved conversion
factors. In table 1 we give an ensemble overview.

Ensemble β a[fm] κ V mπ [GeV] Lmπ Nconf tf/a
I 5.20 0.081 0.13596 323×64 0.2795(18) 3.69 1986(4) 13
II 5.29 0.071 0.13620 243×48 0.4264(20) 3.71 1999(2) 15
III 0.13620 323×64 0.4222(13) 4.90 1998(2) 15,17
IV 0.13632 323×64 0.2946(14) 3.42 2023(2) 7(1),9(1),11(1)

13,15,17
V 403×64 0.2888(11) 4.19 2025(2) 15
VI 643×64 0.2895(07) 6.71 1232(2) 15
VII 0.13640 483×64 0.1597(15) 2.78 3442(2) 15
VIII 643×64 0.1497(13) 3.47 1593(3) 9(1),12(2),15
IX 5.40 0.060 0.13640 323×64 0.4897(17) 4.81 1123(2) 17
X 0.13647 323×64 0.4262(20) 4.18 1999(2) 17
XI 0.13660 483×64 0.2595(09) 3.82 2177(2) 17

Table 1: N f = 2 lattice set-up. Number of sources per configuration in brackets.

3. Extracting Generalized Form Factors

GFFs are obtained by solving an (in general) overdetermined system of equations. In the case
of the vector GFFs the equation system reads

ε(t,τsink) =

M

A2,0(t)
B2,0(t)
C2(t)

−~c(t,τsink)


T

cov−1(~c(t,τsink))

M

A2,0(t)
B2,0(t)
C2(t)

−~c(t,τsink)

 . (3.1)

We extract the GFFs of interest by minimizing eq. (3.1). The coefficient matrix M in eq. (3.1) is
fully determined by eq. (1.3). The matrix elements~c(t,τsink) are extracted from lattice three-point
functions. The dependency on the source-sink separation τsink

1 is examined in the next section,
where in the limit τsink→ ∞ the ground state GFFs are obtained.

A good signal is a prerequisite for excited-state fits since we have to fix many fit parameters. It
turns out that excited-state fits are not possible for t < 0 if we naively implement eq. (3.1). However,
we can dramatically improve the signal if we average three-point functions which lead to the same
rows in M.

1We set τsource = 0.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
1
8

Nucleon generalized form factors Rudolf Rödl

4. Extraction of matrix elements from lattice QCD and excited states.

As mentioned in section 2 we use optimized Wuppertal smearing on our quark field interpo-
lators. Possible remaining excited states contributions are treated with simultaneous combined fits
to two- and three-point functions. We therefore parametrize the two and three-point functions

C3(~pi,τ,τsink) = c(τsink)

√
z~0N z~pi

N e−mN(τsink−τ)e−E(~pi, mN)τ

+ x1 e−mN(τsink−τ)e−E ′(~pi)τ + x2 e−m′N(τsink−τ)e−E(~pi, mN)τ + x3 e−m′N(τsink−τ)e−E ′(~pi)τ ,

C1e
2 (p,τ) = z~pN

E(~p, mN)+mN

E(~p, mN)
e−E(~p, mN)τ ,

C2e
2 (p,τ) = z~pN

E(~p, mN)+mN

E(~p, mN)
e−E(~p, mN)τ + z~pN′

E ′(~p)+mN′

E ′(~p)
e−E ′(~p)τ . (4.1)

Above we denote the nucleon mass as mN and its energy as E(~p,mN). Further, we assume the
continuum dispersion relation for the ground state E(~p,mN) = m2

N +~p2 . All expressions corre-
sponding to the first excited-state are indicated by a prime. The energy of the first excited-state
E ′(~p) is left as a fit parameter since this could be a mulit-hadronic state. Our kinematic set-up
is chosen such that the final momentum is always zero ~p f =~0. To accomplish the ground state
extraction (parameter c(τsink) ) we fix z~0N and z~pi

N by virtue of the two-point functions.

5. Assessment of the excited-state fit

We simultaneously fit all parameters according to the coefficient matrix M. This is not trivial
but has the advantage that rows with a poor signal are stabilized by others. The fit parameter x3 in
eq. (4.1) is only resolvable if multiple τsink per ensemble are available. Therefore, we perform in
general a 3-exponent fit where we set x3 = 0. To check whether this is justified or not we utilize
ensemble VIII which has three different source sink separations τsink/a = 9,12,15, see fig. 1.
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Figure 1: Extraction method analysis: Data points in the left panel are ratios of three-point and two-point
functions for different source sink separations of ensemble VIII for a certain row r1 in the coefficient matrix
M at t =−0.211GeV2. The corresponding solid lines are ratios created with the fit functions using eq. (4.1)
and setting x3 = 0. Right panel shows matrix elements c(τsink) obtained with different extraction methods.
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In the right panel of fig. 1 we compare different values for the matrix element as a function
of τsink and as a function of different extraction methods. More specifically, we compare the ratio
method and the 3 exponent excited-state fit to the full excited-state fit with 4 exponents which is
shown as a gray band.

We conclude from the right panel that at given statistics a distinction between the different fit
methods is not possible if the source sink separation is τsink/a = 15 which is about 1fm. This is
consistent with what we have found in [8]. In this work we use the 3-exponent fit.

6. Extraction of Au−d
2,0 , Bu−d

2,0 and Ju−d

We utilize Baryon Chiral Perturbation Theory to extract Ju−d at physical pion mass. Our aim
is to quote an upper and lower bound of Au−d

2,0 , Bu−d
2,0 and Ju−d including the statistical error and the

systematical error from the fit range choice. To that end we perform global combined fits to our
lattice ensembles with fit functions Au−d

2,0 (t,m2
π ,~ΘA) and Bu−d

2,0 (t,m2
π ,~ΘB) known from (BChPT) [9].

More specifically,

Au−d
2,0 (t,mπ) =

1−
(1+3g2

A)m2
π log(m2

π

µ2 )

16 f 2
π π2

 L +m2
π MA

2 +m3
π MA

3 + t(T A
0 +m2

π T A
1 ) (6.1)

Bu−d
2,0 (t,mπ) =

g2
A m2

π log(m2
π

µ2 )

16 f 2
π π2 L+

1−
(1+2g2

A)m2
π log(m2

π

µ2 )

16 f 2
π π2

 LB +m2
π MB

2 + t(T B
0 +m2

π T B
1 ).

(6.2)

with fit parameters ~ΘA = (L,MA
2 ,M

A
3 ,T

A
0 ,T A

1 ) and ~ΘB = (L,LB,MB
2 ,T

B
0 ,T B

1 ). The fit parameters T A
1

and T B
1 are introduced by hand but they naturally appear in next order of BChPT. We do this since

we consider relatively large virtualities with |tmax|= 0.6GeV� mπ .
In order to get an upper and lower bound for Au−d

2,0 and Bu−d
2,0 we randomly sample fit range

choices (to estimate the systematical error). For each sample we fit the bootstrap ensemble (to esti-
mate the statistical error). Then we generate the distributions of the fit parameters~ΘA and~ΘB which
contain the combined error. In the last step we draw fit parameters from the distributions~ΘA and~ΘB

and evaluate eq. (6.1) and eq. (6.2) with t = 0GeV and fixed pion mass mπ . This yields distributions
for Au−d

2,0 (t = 0,mπ), Bu−d
2,0 (t = 0,mπ) and Ju−d(mπ) = (Au−d

2,0 (t = 0,mπ)+Bu−d
2,0 (t = 0,mπ))/2.

We define the lower and upper error as 0.16 and 0.84 quantiles respectively. By repeating this
process for many pion masses mπ we are able to draw error bands as shown in the left panel of
fig. 2 while the right panel shows the outcome for mπ = mphy

π .

7. Lattice results for the Axial-GFFs Ãu−d
2,0 and B̃u−d

2,0

We carefully study fit range dependencies (induced by the combined fit to two- and three-
point functions). The error bars in fig. 3 show the (statistic and systematic) one-sigma error. Each
single error bar is constructed from a histogram with sample-size s = (# of fit range combinations)
· (#number of bootstrap ensembles). Here we have used s = 75 · 300 = 22500. A more detailed
analysis will be published in the near future.
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Figure 2: Results for Au−d
2,0 and Bu−d

2,0 and Ju−d . The dashed black line indicates the physical pion mass. We
always exclude the heaviest ensemble IX due to the applicability of BChPT (blue). To probe the stability of
our Ansatz, we also show results where we additionally drop the two lightest ensembles VII & VIII (green).
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Figure 3: Lattice results for Ãu−d
2,0 and B̃u−d

2,0 . For both GFFs we do not see a strong volume or pion mass
dependence. Most notably are the small errors of ensemble VI with a 643×64 volume and Lmπ = 6.71.
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8. Conclusion

We determine Au−d
2,0 , Bu−d

2,0 and Ju−d by virtue of lattice QCD. Further, utilizing Baryon Chiral
Perturbation Theory, we calculate the observables at the physical pion mass, where, we focused on
the construction of reliable errors. This is achieved by the histogram method which propagates the
statical error and the systematic error of the fit range choice. The final values are shown in table 2.

Observable MS µ = 2GeV

Au−d
2,0 (Q2 = 0, mphy

π ) 0.200 (-7/+9)
Bu−d

2,0 (Q2 = 0, mphy
π ) 0.275 (-11/+8)

Ju−d(mphy
π ) 0.238 (-8/+5)

Table 2: Table of results: The numbers correspond to the blue distributions shown in fig. 2. They have a
systematic error from the application of Baryon Chiral Perturbation Theory to our lattice ensembles.

Further, we determine Ãu−d
2,0 and B̃u−d

2,0 which are the GFFs corresponding to the Axial-GPD,
however, more work has to be done especially to extrapolate B̃u−d

2,0 to Q2 = 0.
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