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1. Introduction

In this proceedings we report on our latest calculation of elastic electromagnetic form fac-
tors of charmed hadrons. This work extends our previous form factor calculation of spin-1/2
charmed baryons [1] to the spin-3/2 baryons composed of strange and charm quarks. Our aim is to
broaden the perspective on heavy baryons by including the elastic electromagnetic form factors of
the J = 3

2
+ strange-charmed baryons and examining the spin-dependence of the quark dynamics.

We compute the electromagnetic form factors of the Ω, Ω∗
c , Ω∗

cc and Ωccc baryons as well as the
Ωc, Ωcc baryons with J = 1

2
+. We extract the electric charge radii and the magnetic moments, and

give a thorough comparison of both for the spin-3/2 and spin-1/2 sectors, which helps to improve
our understanding of the nonperturbative structure of the strange-charmed baryons.

2. Theoretical formulation and lattice setup

Electromagnetic form factors of baryons can be calculated through their matrix elements of the
electromagnetic vector current jµ = ∑q eqq̄(x)γµq(x), where q runs over the quark content of the
baryon in consideration. We refer the reader to Ref. [1] for the analytical expressions of spin-1/2
baryons. Here we only give the details for spin-3/2 baryons.

The electromagnetic transition matrix element for the spin-3/2 baryons can be written as

⟨Bσ (p′,s′)| jµ |Bτ(p,s)⟩=
√

M2
B

E E ′ ūσ (p′,s′)Oσ µτuτ(p,s), (2.1)

where p(s) and p′(s′) denote the four momentum (spin) of the initial and final states, respectively.
MB is the mass of the baryon, E (E ′) is the energy of the incoming (outgoing) baryon state and
uα(p,s) is the baryon spinor in the Rarita-Schwinger formalism. The tensor in Eq. (2.1) can be
written in a Lorentz-covariant form as [2]

Oσ µτ =−gστ
{

a1γµ +
a2

2MB
Pµ
}
− qσ qτ

(2MB)2

{
c1γµ +

c2

2MB
Pµ
}
, (2.2)

where P = p+ p′ and q = p′− p. The multipole form factors we calculate in this work are defined
in terms of the covariant vertex functions a1, a2, c1 and c2 as,

GE0(q2) = (1+
2
3

τ){a1 +(1+ τ)a2}−
1
3

τ(1+ τ){c1 +(1+ τ)c2} , (2.3)

GE2(q2) = {a1 +(1+ τ)a2}−
1
2
(1+ τ){c1 +(1+ τ)c2} , (2.4)

GM1(q2) = (1+
4
3

τ)a1 −
2
3

τ(1+ τ)c1, (2.5)

with τ = −q2/(2MB)
2. These multipole form factors are referred to as electric-charge (E0),

electric-quadrupole (E2) and magnetic-dipole (M1) multipole form factors.
We calculate the appropriate three-point correlation function on the lattice,

⟨GB jµ B
στ (t2, t1;p′,p;Γ)⟩=−i ∑

x2,x1

e−ip′·x2eiq·x1Γαα ′⟨vac|T [ηα
σ (x2) jµ(x1)η̄α ′

τ (0)]|vac⟩, (2.6)
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where the ηµ are the baryon interpolating fields chosen similarly to those of ∆ baryon as ηµ(x) =
1√
3
ε i jk{2[qTi

1 (x)Cγµq j
2(x)]q

k
3(x)+ [qTi

1 (x)Cγµq j
3(x)]q

k
2(x)}. i, j, k denote the color indices and C =

γ4γ2. q1, q2, q3 are the quark flavors and taken as (q1,q2,q3) ={(s,s,s), (s,s,c), (s,c,c), (c,c,c)}
for Ω, Ω∗

c , Ω∗
cc and Ωccc baryons, respectively. Spin projections with Γ4 = 1

4 (1+ γ4) and Γi =

1
2

(
σi 0
0 0

)
isolate the electric E0, E2 and magnetic M1 multipole form factors. In order to extract

the matrix elements, we form a ratio of three-point to two-point functions which, in the large time
limit t2 − t1 ≫ a and t1 ≫ a, forms a time-independent ratio free from the unknown overlaps and
exponential factors:

R µ
σ τ(t2, t1;p′,p;Γ) t1≫a−−−−−→

t2−t1≫a

(
Ep +MB

2Ep

)1/2(Ep′ +MB

2Ep′

)1/2

Π µ
σ τ(p′,p;Γ). (2.7)

The multipole form factors can be extracted by using the following combinations of Π µ
σ τ(p′,p;Γ) [3]:

GE0(q2) =
1
3
(
Π 4

1 1(qi,0;Γ4)+Π 4
2 2(qi,0;Γ4)+Π 4

3 3(qi,0;Γ4)), (2.8)

GE2(q2) = 2
M(E +M)

|qi|2
(
Π 4

1 1(qi,0;Γ4)+Π 4
2 2(qi,0;Γ4)−2Π 4

3 3(qi,0;Γ4)), (2.9)

GM1(q2) =−3
5

E +M
|q1|2

(
Π 3

1 1(q1,0;Γ2)+Π 3
2 2(q1,0;Γ2)+Π 3

3 3(q1,0;Γ2)), (2.10)

where i = 1,2,3 and qi are the momentum vectors in three spatial directions.
We run our simulations on 323 × 64, 2+1-flavor configurations generated by the PACS-CS

Collaboration [4] using the Clover fermion action and the Iwasaki gauge action. We use the gauge
configurations at β = 1.90 with the Clover coefficient cSW = 1.715, which give a lattice spacing
of a = 0.0907(13) fm (1/a = 2.176(31) GeV). The simulations are carried out on almost physical
point ensembles with hopping parameter, κsea

u,d , κval
u,d =0.13781, which correspond to a pion mass

of approximately 156 MeV. The strange quark mass is fixed to κs
sea = 0.13640. In order to be

consistent with the sea quarks we use the clover action for the s valence quark propagators and we
take κs

sea = κs
val .

For the charm quarks, we apply the Fermilab method [5] in the form employed by the Fermilab
Lattice and MILC Collaborations [6, 7]. In this simplest form of the Fermilab method, the clover
coefficients cE and cB in the action are set to the tadpole-improved value 1/u3

0, where u0 is the
average link. Following the approach in Ref. [8], we estimate u0 to be the fourth root of the
average plaquette. We tuned the charm-quark hopping parameter to κc = 0.1246 by comparing the
experimental spin-averaged static masses of charmonium and heavy-light mesons with our lattice
results [1].

We make our simulations with the lowest allowed lattice momentum transfer q = 2π/(Nsa),
where Ns is the spatial dimension of the lattice and a is the lattice spacing. This corresponds to
three-momentum squared value of q2 = 0.183 GeV2. In order to increase statistics, we insert
all possible momentum components, namely (|qx|, |qy|, |qz|) = (−1,0,0), (0,−1,0), (0,0,−1),
(1,0,0), (0,1,0), (0,0,1). We also consider vector-current and spin projections along all spatial
directions and take into account all Lorentz components of the Rarita-Schwinger field. By the
wall method [9] that we employ, it is possible to extract all the components and simultaneously
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study all the hadrons we are considering without extra propagator inversions. The source interpo-
lating fields are Gaussian smeared in a gauge-invariant manner and the source-sink separation is
chosen to be 12 lattice units in the temporal direction. The smearing parameters for the s quark
are chosen so as to give a root-mean-square radius of ⟨rl⟩ ∼ 0.5 fm. As for the charm quark, we
adjust the smearing parameters to obtain ⟨rc⟩ = ⟨rl⟩/3. All statistical errors are estimated by a
single-elimination jackknife analysis. We calculate the connected diagrams only and consider the
point-split lattice current, jµ = 1/2[q̄(x+ µ)U†

µ(1+ γµ)q(x)− q̄(x)Uµ(1− γµ)q(x+ µ)], which is
conserved by Wilson fermions.

3. Results and Discussion

Masses of the Ω, Ω(∗)
c , Ω(∗)

cc and Ωccc baryons are extracted from the shell-source/point-sink
lattice two-point function by a simultaneous fit to all spatial Lorentz components. In units of
GeV we find, mΩc = 2.783(13), mΩcc = 3.747(10) , mΩ = 1.790(17), mΩ∗

c
= 2.837(18), mΩ∗

cc
=

3.819(10) and mΩccc = 4.769(6). For the Ω, Ωc and Ω∗
c baryons there is a discrepancy of around

100 MeV compared to their experimental values, mainly due to the κval
s = 0.13640, which we

choose same as the κsea
s . For instance, mΩ is in agreement with the mΩ = 1.772(7) GeV reported

by the PACS-CS Collaboration [4]. Mass of the Ωccc as obtained in our simulations agrees with
those from other lattice simulations [10, 11, 12, 13] with different actions, which can be taken as a
good indicator for the aptness of the charm-quark action we employ.

In our simulations we evaluate each quark sector separately and normalise to unit charge con-
tributions. The baryon properties are then estimated by combining the quark contributions with
their weights from respective quark numbers and electric charges as, ⟨O⟩= Nses⟨Os⟩+Ncec⟨Oc⟩,
where ⟨O⟩ is the observable, Nq is the number quarks inside the baryon having flavor q and eq

is the electric charge of the quark. Multipole form factor values are extracted by searching for
plateau regions of the ratio given in Eq.(2.7). We refer the reader to Ref. [14] for the illustration of
ratios and the fit regions of the E0, M1 and E2 form factors. Here we only quote the charge radii,
magnetic moments and quadrupole moments.

Electric charge radii of the baryons are calculated by, ⟨r2
E⟩=−6 d

dQ2 GE0(Q2)|Q2=0. We assume

a dipole form Ansatz for the form factor, GE0(Q2) = GE0(0)
(1+Q2/Λ2)2 , where Λ is the dipole mass. Since

we perform our simulations with a single value of the finite momentum transfer, we extract the
charge radii using the expression, ⟨r2

E⟩
GE0(0)

= 12
Q2

min

(√
GE0(0)

GE0(Q2
min)

−1
)

. Our numerical values for the
electric charge radii are given in Table 1. Note that the quark sector contributions are for individual
quarks of unit electric charge.

We observe that the s-quark contribution to the electric charge radii is almost independent of
the quark-flavor composition of the baryon. The charge radii of both spin-1/2 and spin-3/2 baryons
agree within one standard deviation, which can be seen more clearly in Fig. 1. In the case of c-
quark contributions, the charge radii of all baryons are similar. The ratios of individual quark-flavor
contributions in the spin-1/2 to that in the spin-3/2 sector are also shown in Fig. 1. We observe that
for the singly-charmed Ωc baryon, s- and c-quark charge distributions are insensitive to the spin-
flip of the c-quark whereas in the case of the doubly-charmed Ωcc baryon the contributions of s-
and c-quark to the charge radii increase. We find the electric charge radius of the Ω baryon to be
⟨r2

E⟩Ω− =−0.326(21) fm2 in quite good agreement with the previous lattice determinations [15, 3].

4
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Ωc Ωcc Ω Ω∗
c Ω∗

cc Ωccc

⟨r2
E⟩s [fm2] 0.329(25) 0.313(16) 0.326(21) 0.345(17) 0.348(16) —

⟨r2
E⟩c [fm2] 0.064(11) 0.073(4) — 0.062(5) 0.078(3) 0.084(3)

⟨r2
E⟩ [fm2] -0.177(18) 0.026(4) -0.326(21) -0.189(12) -0.012(6) 0.168(5)

Table 1: Electric charge radii of the Ω, Ω∗
c , Ω∗

cc and Ωccc. Results are given in fm2. Quark sector
contributions are for single quark and normalised to unit charge. Total electric charge radius of the
spin-1/2 Ωc is estimated by combining quark sectors since its electric form factor vanishes due to
its zero electric charge.

A comparison of baryon charge radii is made in Fig. 1. In magnitude, Ω (Ω∗
c) baryon has the largest

electric charge radius among all (spin-3/2) baryons we study. Spin-1/2 (spin-3/2) Ωc (Ω∗
c) and Ωccc

seem to have similar charge radii while the Ωcc (Ω∗
cc) baryon has almost a vanishing charge radius.
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Figure 1: First three are: s− and c−quark contributions to the electric charge radii and the total
electric charge radii of the denoted baryons respectively. Last one is: the ratio of the quark con-
tribution to the electric charge radii of the spin-1/2 Ωc, Ωcc to spin-3/2 Ω, Ω∗

c baryons. Absolute
values are shown for a better comparison. Data points denoted by a triangle indicates a negative
value. Empty symbols indicate the spin-1/2 sector.

We evaluate the magnetic dipole moment in units of nuclear magnetons as, µB =GM1(0) e
2mB

=

GM1(0)mN
mB

µN , where mN is the physical nucleon mass and mB is the baryon mass as obtained on
the lattice. As in Ref. [16], we assume that the momentum-transfer dependence of the magnetic
dipole form factor is same as the momentum dependence of the respective baryon’s charge form
factor. For instance, the scaling of GM1 is given by, Gs,c

M1(0) = Gs,c
M1(q

2)
Gs,c

E (0)
Gs,c

E (q2)
, where we consider

the scaling of s and c quark sectors separately since each sector has a different scaling property.
Quark sectors are then combined to construct GM1(0).

Our numerical values for the magnetic moments are listed in Table 2, which are also illus-
trated in Fig. 2. We find for spin-1/2 baryons that the contribution of a single quark to the magnetic
moment significantly increases when it is doubly represented. The effect of the spin flip is seen
as a sign change in case of the Ωc and Ωcc baryons. We illustrate the ratios of the quark-sector
contributions to spin-1/2 and spin-3/2 baryons in Fig. 2 to understand the effect of the quark spin
configurations on the quark magnetic moments better. In the case of spin-3/2 baryons, both the
individual s-quark and c-quark contributions are enhanced. Ratios, SΩ/

cΩ∗
c
, and CΩ/

ccΩ∗
cc

, are consis-
tent with each other like the singly strange and the singly charmed baryon ratios, suggesting that
the difference between the spin-1/2 and the spin-3/2 baryons is almost independent of the quark
flavour. We find the magnetic moment of the Ω− baryon to be µΩ− = −1.533± 0.055 µN , which
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Ωc Ωcc Ω Ω∗
c Ω∗

cc Ωccc

µs [µN] 0.979(47) -0.402(17) 1.533(55) 1.453(36) 1.408(29) —
µc [µN] -0.092(6) 0.216(3) — 0.358(8) 0.352(4) 0.338(2)
µ [µN] -0.688(31) 0.403(7) -1.533(55) -0.730(23) 0.000(10) 0.676(5)

Table 2: Magnetic moments of the Ω, Ω(∗)
c , Ω(∗)

cc and Ωccc. Results are given in units of nuclear
magnetons, µN . Quark sector contributions are for single quark and normalised to unit charge.

is smaller in magnitude than the experimental value, µexp
Ω− = −2.02± 0.05 µN [17]. One of the

reasons for this discrepancy can arise from the difference between our mΩ = 1.790(17) and the
experimental value, mΩ = 1.673(29), which is around 7%. Compared to the other lattice deter-
minations that use the three-point function method, our value is slightly smaller (in magnitude)
than the quenched result, µΩ− = −1.697± 0.065 µN , of Boinepalli et.al [3] and agrees with the
Alexandrou et.al’s extrapolated value, µΩ− = −1.875± 0.399 µN [15] within one sigma error. In
Ref.[18] magnetic moment of Ω has determined to be µΩ− =−1.93±0.08, by a background field
method on mπ = 366 MeV lattices. Magnetic moments of Ωc and Ω∗

c being similar to each other
suggests that the spin flip of the charm quark has a small effect, in accord with heavy-quark spin
symmetry expectations. From a quark-model approach one would expect the magnetic moment
of Ωc (Ωcc) to be similar in magnitude to that of Ω∗

c (Ω∗
cc)’s. Such an expectation is consistent

with our Ωc findings, however, the magnetic moments of Ωcc and Ω∗
cc differ drastically, the latter

having a completely vanishing magnetic moment. The difference between the Ωc and Ω∗
c is that

the c-quark is anti-aligned with the ss component in Ωc whereas it is aligned in Ω∗
c . Combined with

their electric charges, quark sectors add constructively for Ωc and destructively for Ω∗
c . These two

different behaviours occur in such a balanced way that the magnetic moments of the Ωc and Ω∗
c

end up to be similar. In case of the doubly-charmed Ωcc and Ω∗
cc however, the interplay between

the electric charges and the number of quarks breaks the balance and lead to magnetic moments for
Ωcc and Ω∗

cc that differ significantly.
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Figure 2: Same as Fig.1 but for magnetic moments.

The electric-quadrupole form factors of spin-3/2 baryons provide information about the devi-
ation of the baryon shape from spherical symmetry. In the Breit frame, the quadrupole form fac-
tor and the electric charge distribution are related as [19], GE2(0) = M2

B
∫

d3rψ̄(r)(3z2 − r2)ψ(r),
where 3z2 − r is the standard operator used for quadrupole moments. A positively charged baryon
has a prolate (oblate) charge distribution when quadrupole form factor is positive (negative). As in
the case of the E0 and M1 form factors, we estimate the E2 form factor by the plateau approach.
We compute and extract the s- and c-quark sector contributions individually. Unfortunately, low
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signal/noise ratio does not allow us to conclude about Ω and Ω∗
c baryons. In the case of the heavier

Ω∗
cc and Ωccc baryons, however, we find E2(Q2)Ω∗

cc =−0.310(128) and E2(Q2)Ωccc =−0.273(76)
indicating that their charge distributions deform to an oblate shape.

4. Summary

We have calculated the electromagnetic form factors of the Ω, Ω∗
c , Ω∗

cc and Ωccc baryons at the
lowest allowed three-momentum value (q2 = 0.183 GeV2) and extracted their electric charge radii,
magnetic moments and quadrupole moments on almost physical point gauge configurations. Same
quantities for the Ωc and Ωcc baryons are also computed. For each observable we have identified
the quark sector contributions and gave a comparison between the quark sectors and spin-1/2 and
spin-3/2 sectors. In addition, baryon properties are constructed from the individual quark sectors
contributions.
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