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1. Introduction

The form factors of the nucleon and its coupling to external currents are important quantities
which contribute to our understanding of hadron structure through, for example, charges and their
distributions. Reliable non-perturbative determinations of these quantities from lattice QCD are
valuable to address, for example, the proton radius puzzle [1], and have comprised part of the pro-
gramme of many groups [2, 3, 4, 5]. Nevertheless, lattice studies have failed to provide agreement
with several key experimental observables, like the axial charge gA = 1.2723(23)gV [6], possibly
owing to systematic uncertainties such as finite-size, discretization and excited-state effects, which
are difficult to control. In these proceedings we report on early progress on the nucleon Sachs
electromagnetic form factors,

GE(Q2) = F1(Q2)− Q2

4m2
N

F2(Q2), (1.1)

GM(Q2) = F1(Q2)+F2(Q2), (1.2)

and axial charge, gA = GA(0), which can be accessed by computing the matrix elements of the
vector Vµ(x) = ψ̄(x)γµψ(x) and axial Aµ(x) = ψ̄(x)γ5γµψ(x) (isovector) currents, with a nucleon
with momentum ppp and spin s,

〈N(ppp′′′,s′)|Vµ(0) |N(ppp,s)〉= ū(ppp′′′,s′)
[

γµF1(Q2)+ i
σµνqν

2mN
F2(Q2)

]
u(ppp,s), (1.3)

〈N(ppp′′′,s′)|Aµ(0) |N(ppp,s)〉= ū(ppp′′′,s′)
[

γ5γµGA(Q2)+
γ5qµ

2mN
GP(Q2)

]
u(ppp,s), (1.4)

where Q2 =−q2 =−(p′− p)2 and mN is the nucleon mass. In this work, the matrix elements are
calculated using ensembles with Nf = 2+ 1 flavours of Wilson fermions, developing upon earlier
Nf = 2 determinations by the Mainz group [7, 8].

2. Lattice set-up

The ensembles used in this work, listed in table 1, have been generated with Nf = 2+1 flavours
of non-perturbatively O(a)-improved Wilson fermion [9] by the CLS effort [10]. These ensembles
utilize open boundary conditions in the time direction in order to sample correctly from all topo-
logical charge sectors at fine lattice spacings [11]. Our initial effort has focussed on ensembles at
the coarsest lattice spacing, a ≈ 0.086fm, with three values of the pseudoscalar mass, mπ = 350,
280 and 220 MeV, called H102, H105 and C101, respectively.

2.1 Calculation of the matrix elements

In order to optimize the overlap of the interpolating operator with the ground state, we employ
Wuppertal smearing with APE smeared links [12, 13], with parameters chosen to optimize the
effective mass plateau of the nucleon at short distances. The two- and three-point functions,

C2(t;qqq) = Γαβ ∑
xxx

e−iqqqxxx〈
Ψβ (xxx, t)Ψ̄α(0)

〉
, (2.1)

C3,J(t, ts;qqq) = Γαβ ∑
xxx,yyy

e−iqqqyyy〈
Ψβ (xxx, ts)J(yyy, t)Ψ̄α(0)

〉
, (2.2)
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name chains β a (fm) T/a L/a mπL mπ (MeV) Ncfg Nsrc Nts

H102 H102r001 3.4 0.086 96 32 5.8 350 997 4 3
H102r002 ” ” ” ” ” ” 1000 ” ”

H105 H105r002 ” ” ” ” 4.9 280 1000 ” ”
H105r005 ” ” ” ” ” ” 837 ” ”

C101 C101r015 ” ” ” 48 4.7 220 575 8 ”

N200 N200r000 3.55 0.064 128 ” 4.4 280 800 4 6

Table 1: Details of the CLS Nf = 2+1 ensembles and measurements used in this work.

J

Ψ̄ΨΨ̄Ψ

Figure 1: Schematic contractions for the connected contributions to the nucleon two- (left) and three-point
(right) functions.

with polarization matrix Γ = (1+γ0)(1+ iγ5γ3), are illustrated in figure 1. The three-point function
is calculated using the sequential source method, where the dashed propagator in figure 1 (right)
is computed independently of the current, J, and the final-state nucleon is always at rest. In the
asymptotic regime dominated by the ground state, the ratios

RJ(t, ts;Q2) =
C3,J(t, ts;qqq)

C2(ts;qqq)

√
C2(ts− t;−qqq)C2(t,000)C2(ts;000)

C2(ts− t;000)C2(t;−qqq)C2(ts;−qqq)
, (2.3)

have been demonstrated [14] to have good overlap properties to access the form factors and axial
charge from the (Euclidean) isovector currents

ReRV E
0
(t, ts;Q2) =

√
mN +Eppp

Eppp
GE(Q2), (2.4)

ReRV E
i
(t, ts;Q2) =

ε i jq j√
2Eppp(Eppp +mN)

GM(Q2), i, j ∈ {1,2}, (2.5)

ImRAE
3
(t, ts;0) = gA, (2.6)

where E2
ppp = ppp2+m2

N and ε ji =−ε i j, ε12 =+1. Note that we use the exactly-conserved (point-split)
discretization of the vector current.

The boundary conditions break translation invariance in the time direction, and correlation
functions receive contributions which decay at least with energy of twice the pseudoscalar mass
times the distance from the operator to the nearest boundary, which is the lowest energy with
vacuum quantum numbers. For example, in the two-point function with source located on at a
distance tsrc/a from the boundary,

C2(t,000) = |〈 /0|Ψ |N〉|2e−mNt + 〈 /0|Ψ |N〉〈N|Ψ̄ |2π〉e−2mπ tsrc + . . . . (2.7)
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To minimize such effects, we have adopted a conservative approach to fix the source location such
that for the largest source-sink separation both operators are maximally distant from the boundaries.
For example, with T/a = 96 and maximum source-sink separation of ts/a = 16, we choose the
source temporal coordinate tsrc/a = 40. In total four sources are used per configuration, placed
at one corner and the face-centres of the cubic spatial volume. Additional sources for the C101
ensemble are placed in the cubic body- and edge-centres.

2.2 Accounting for excited states

To eliminate residual excited-state effects, we have used three source-sink separations in this
work with ts/a ∈ {12,14,16}, corresponding to ts ≈ 1.0–1.4fm. Following [8] we employ two
methods to control excited-state effects:

1. two-state method: the form-factor ĜX(Q2) is estimated by modelling the contribution of the
leading excited state,

Geff
X (t, ts;Q2) = ĜX(Q2)+aX(Q2)e−∆t +bX(Q2)e−∆′(ts−t). (2.8)

In this case, the energy gap is fixed to the lowest non-interacting level, ∆ = mπ or 2mπ and
∆′ = 2mπ and leaving the transition matrix elements, aX , bX as free parameters. In the case
of the axial charge, the couplings are subject to the constraint aX = bX . Simultaneous fits are
performed to all source-sink separations.

Recent work by members of our group has investigated the approximation of using the non-
interacting levels. By using experimental scattering data in the Lüscher finite-volume for-
malism, it appears that the interacting Nπ levels in a finite volume are close to their non-
interacting counterparts [15]. This gives us some confidence in the plausibility of such an
ansatz.

However, recent predictions from leading-order chiral perturbation [16] theory suggest that
the coupling to the first excited-state should be significantly smaller than what is typically
observed when fixing the gap to the first non-interacting level. This leading-order prediction
would induce an overestimation of the axial charge if this leading excited-state contamination
were not accounted for. Typically, an underestimation is reported from lattice data.

2. summation method: by summing over the position of the temporal coordinate of the operator
insertion, an estimator with excited-state effects O(e−∆ts) can be obtained from the slope of
the function as

ts

∑
t=0

Geff
X (t, ts;Q2)

ts�0→ KX(Q2)+ tsĜX(Q2)+ . . . , (2.9)

where KX(Q2) denote (generally divergent) constants and omitted terms are exponentially
suppressed. However, this can result in a trade-off between the statistical and systematic
error as the statistical error on the sum grows with ts and the slope may not be accurately
determined.
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Figure 2: Effective electric (left) and magnetic (right) form factors at Q2 = 0.19GeV2 and Q2 = 0.62GeV2

on the H102 ensemble central values and errors from the two-state (orange band) and summation (grey band)
methods.

3. Electromagnetic form factors

Examples of the effective form-factors, GE(t, ts;Q2) and GM(t, ts;Q2), for the H102 ensembles
with pseudoscalar mass mπ = 350 MeV are shown in figure 2 in the left and right panels respec-
tively. The red squares, green circles and blue triangles are the data for source-sink separations
ts/a = 12,14,16 respectively. The characteristic curvature attributed to non-perfect overlap with
the nucleon ground-state is clearly seen. In particular, the slower decay of these effects at the source
than at the sink is consistent with our expectations from the coupling to the different excited states
due to the kinematical set-up.

The central value and error from the two-state method are shown with the orange line and
band. The band is observed not to be compatible with any of the data themselves, which suggests
the significance of the excited-state contribution. Nevertheless, the model describes the data well as
can be observed from the solid red, green and blue lines. The grey solid line and band correspond to
the central value and error from the summation method. Both methods provide good descriptions
of the data with uncorrelated χ2/dof < 1. Good agreement is observed between both methods
however the estimation from the summation method is not as precise as the two-state method.

In order to compare the dependence on the pseudoscalar mass, we compile the results from
the two-state method from the different β = 3.4 ensembles (full symbols) in figure 3. The solid
black line depicts the parameterization of the experimental data by Kelly [17], which at the current
precision cannot be distinguished from more recent parameterizations [18]. Strong dependence on
the pseudoscalar mass is observed in the electric form factor (figure 3, left), which may lead to
an undershooting of the experimental curve after an extrapolation to the physical pion mass. In
contrast, the magnetic form factor (figure 3, right) shows little dependence on the pseudoscalar
mass. The preliminary data for the N200 ensemble with mπ = 280 MeV at a finer lattice spacing
are displayed in figure 3 (open symbols), which are in good agreement with the β = 3.4 data at a
similar value of the mπ , meaning lattice artifacts cannot be resolved with the current precision.
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Figure 3: Preliminary electric (left) and magnetic (right) form factors estimated using the two-state method
with the phenomenological curve parameterized by Kelly.
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Figure 4: Nucleon axial charge on H105 ensemble (left) and dependence on the pseudoscalar mass.

4. Axial charge

Preliminary results for the axial charge are shown in figure 4. The effective axial charge is
shown in the left-hand panel where the red squares, green circles and blue triangles are the data for
source-sink separations ts/a = 12,14,16 respectively. Again, the orange and grey bands depict the
axial charge estimated using the two-state method and summation method. Similar to the case of
the electromagnetic form factors, the central value of the axial charge lies outside the error of the
data. The error on the summation method is significantly larger than that of the two-state method.
For comparison of the different ensembles, in the right-hand panel of figure 4 we show the axial
charge as a function of the pseudoscalar mass, although no discernible trend is visible.
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5. Summary

In this preliminary report we have investigated the nucleon electromagnetic form factors and
axial charge on Nf = 2+1 flavours of O(a)-improved Wilson fermions, extending our Nf = 2 deter-
minations. The open boundary conditions pose no particular extra challenge. In order to improve
the precision of these observables we are currently exploring the use of the truncated-solver method
in order to perform more efficient measurements [19, 20]. Additionally, more sophisticated anal-
yses of the excited-state effects are underway, as well as the O(a)-improvement of the currents
themselves. In future, we aim to cover a broader parameter space in the pseudoscalar mass and
lattice spacing before parameterizing the data at the physical point.
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