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Improving the lattice axial vector current
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For Wilson and clover fermions traditional formulations of the axial vector current do not respect
the continuum Ward identity which relates the divergence of that current to the pseudoscalar
density. Here we propose to use a point-split or one-link axial vector current whose divergence
exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of ir-
relevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and
gauge plaquette action that this is indeed the case including order O(a) effects. Including these
operators the axial Ward identity remains renormalisation invariant. First preliminary results of a
nonperturbative check of the Ward identity are also presented.
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1. Introduction

The axial (nonsinglet) vector current defined as

Aµ(x) = ψ̄(x)γµγ5ψ(x) (1.1)

is an important quantity to study hadronic structures such as quark masses and meson decay con-
stants. In the continuum that current satisfies the axial Ward identity (WI)

∂µAµ(x) = 2mP(x) , P(x) = ψ̄(x)γ5ψ(x) (1.2)

where P(x) denotes the pseudoscalar current and m is the quark mass.
In most lattice studies with Wilson and clover fermions the local lattice axial vector Aloc

µ plus
O(a) improvement is used. Knowing the nonperturbative improvement coefficients bA and cA and
the renormalisation constant ZAloc the renormalised current

Aloc,MS
µ = ZAloc(1+bAam)

[
Aloc

µ +acA∂µP
]lat (1.3)

has been used to determine e.g. the nucleon axial charge gA as a benchmark test. For the considered
lattice fermions most of gA are slightly below the experimental value [1]. A possible reason might
be that the (continuum) Ward identity is spoiled by lattice artefacts using such a local axial vector.

Here we propose to use a point-split or one-link axial vector current whose divergence exactly
satisfies a lattice WI, involving the pseudoscalar density and a number of irrelevant operators.
Operators fulfilling lattice Ward identities and being O(a) improved could remove lattice artefacts
and simplify renormalisation issues. Such operators naturally appear in derivation of lattice Ward
identities [2, 3] (for a recent discussion on related issues, see e.g. [4]).

In [3] a proof of such a WI for Wilson fermions with arbitrary Wilson coefficient r has been
performed in lattice perturbation theory. Using the plaquette gauge action, the renormalisation
factor for the point-split axial vector has been calculated as

ZAsplit(r) = 1+CFg2
ξ (r) , 16π

2
ξ (1) =−8.663 . (1.4)

In this contribution we report on a study of such an axial WI using clover fermions and check
it both perturbatively and nonperturbatively.

2. Lattice axial Ward identity for the point-split axial vector current

To derive a lattice Ward identity for the point-split axial vector current we start from an identity
on every configuration (i, j,k,x - site positions, no implicit summation)

M−1
jx γ5 δxi +δ jx γ5 M−1

xi = ∑
k

(
M−1

jx γ5 MxkM−1
ki +M−1

jk Mkx γ5 M−1
xi

)
, (2.1)

where Mi j denotes the fermion matrix. In the case of clover fermions it can be split up into the
anticommuting with γ5 (the γµ terms) part D, the Wilson term W , the clover term C and a bare mass
mB vanishing for κ = 1/8

Mi j = Di j +Wi j +Ci j +mBδi jI , amB =
1

2κ
−4 . (2.2)
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Averaging (2.1) over gauge configurations, using the splitting (2.2) and rearranging the terms, we
get

G jxi[∂ ·A] = 2mBG jxi[P]−S jxγ5δxi−δ jxγ5Sxi +2G jxi[OC]+G jxi[OW ] . (2.3)

Here S jx is the fermion propagator (two-point function) and G jxi[O] denotes the fermion-line con-
nected three-point function of operator O. The different operators are of the form

a∂ ·A = ∑
µ

[Asplit
µ (x)−Asplit

µ (x−aµ̂)] ,

Asplit
µ (x) =

1
2
[
ψ̄(x)γµγ5Uµ(x)ψ(x+aµ̂)+ ψ̄(x+aµ̂)γµγ5U†

µ(x)ψ(x)
]
,

P = ψ̄(x)γ5ψ(x) , aOC = ψ̄(x)γ5Cxxψ(x) , (2.4)

aOW = 8P− 1
2 ∑

µ

[
ψ̄(x)γ5Uµ(x)ψ(x+aµ̂)+ ψ̄(x+aµ̂)γ5U†

µ(x)ψ(x)+(x→ x−aµ̂)
]
.

A possible gauge field smearing has to match that in the fermion matrix of the used action: for
SLiNC fermions that means stout-smeared Us in ∂ ·A and OW , unsmeared Us in OC.

The first term on the r.h.s. in (2.3) has the form of the usual axial Ward identity, the next term
is a contact term needed (even in the continuum) to make the WI hold offshell. To give an inter-
pretation of the remaining pieces, consider first the free case (tree level). The clover term vanishes,
whereas the Wilson term gives a delta function in position space to cancel lattice artefacts in the
propagators [5]. In the interacting case, OC and OW can mix with lower-dimensional operators to
make sure that the divergence of Asplit vanishes at κc instead of κ = 1/8.

In the forward case G jxi[∂ ·A] = 0, so we are left with an identity linking the propagators to
the three-point functions of P, OW , OC. This could be used to find κc measuring the three-point
functions at different κ on-shell.

3. Perturbative checks and renormalisation

For the check of the axial WI in one-loop lattice perturbation theory (LPT) including partly
O(a2) lattice corrections in momentum space with initial (final) quark momentum p1(p2) [ΛO =

ΛO(p2, p1)]

γ5S−1(p1)+S−1(p2)γ5 =−Λ∂ ·A +2mBΛP +2ΛC +ΛW (3.1)

we have used the Wilson gauge action and clover fermions with stout smeared U in ∂ ·A and OW

and unsmeared U in OC, the Λs denote amputated Green functions. In perturbation theory

amB = am−CFg2

16π2 Σ0 , CF =
4
3
, (3.2)

where Σ0 is the one-loop 1/a contribution to the quark self energy.
The needed Feynman rules have been derived, in the forward case (p2 = p1) one-loop calcu-

lations have been performed for arbitrary quark masses including O(a2) effects. Our results have
been checked against results from the Cyprus group [7] where available. However, our technique

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
3
8

Improving the lattice axial vector current A. Schiller

Vertex Sail Tadpole

p
1 2

pp
1

p
1

p
12

p
2
p

2
p

Figure 1: Typical diagrams.

to include O(a2) differs and avoids Monte Carlo estimates of integrals. In the nonforward case so
far a mass expansion to O(am) has been considered.

Typical diagrams are shown in Fig. 1. Vertex, sail and tadpole diagrams have to be taken
into account for the operators Asplit, ∂ ·A and OW , to P only the vertex diagram and to OC the
sail diagrams contribute. The results are functions of p1, p2,m,α,csw,ω , where α is the gauge
parameter (α = 1 Feynman gauge), csw the strength of the clover term and ω the link smearing
parameter (for further notations see [6]).

We verified the known loop contribution to κc from the mass independent contributions of (3.1)
both in the forward and nonforward case.

The renormalisation factors (in MS) are defined as usual from the quark propagator and the
amputated Green’s functions

SMS(p,mMS) = Z−1
2 Slat(p,Zmm) , Λ

MS
O (p2, p1) = ZO Λ

lat
O (p2, p1) . (3.3)

Z2, Zm, ZP and ZAloc agree with the known results [7]. New for the used action is the renormalisation
factor for the point-split axial vector current (in MS)

ZAsplit = Z∂ ·A = 1+
g2CF

16π2

[
−8.66279+0.9116267csw+ (3.4)

2.00070c2
sw +85.9927ω−4.77316cswω−282.301ω

2
]
.

In the continuum from the axial WI one finds ZmZP = ZA. As expected, for the naive lattice axial
WI that equality is not fulfilled (both for the local Aloc and the point-split Asplit), the difference
ZmZP−ZA contains O(g2) contributions.

Studying the improved identity (3.1) in the forward case, the l.h.s. containing the propagators
is multiplicatively renormalised by Z2

(γ5S−1 +S−1
γ5)

MS = Z2(γ5S−1 +S−1
γ5)

lat . (3.5)

We checked explicitly in one-loop LPT that the combined operator on the r.h.s.

2mBP̄≡ 2mBP+2OC +OW (3.6)

is renormalisation invariant

(2mΛP)
MS = Z2(2mBΛP̄)

lat . (3.7)
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The local operator 2mP would need a finite renormalisation ZmZP whereas the operator with mB

and "irrelevant" terms needs neither additive nor multiplicative renormalisation.
In the nonforward case the axial WI contains the operator ∂ ·A with the point-split axial vector.

The result of that one-loop study is

(−∂ ·A+2mP)MS = (−∂ ·A+2mBP̄)lat (3.8)

which shows that the constructed axial WI is renormalisation invariant.
We identify the form of the renormalisation mixing matrix as(

−∂ ·A
2mP

)MS

=

(
ZAsplit 0

1−ZAsplit 1

)(
−∂ ·A
2mBP̄

)latt

. (3.9)

So the proposed lattice axial Ward identity passed all tests in one-loop LPT.

4. Nonperturbative check and a first application

We have also started a nonperturbative check of the proposed axial WI. As action we use the
n f = 2+1 Stout Link Nonperturbative Clover or SLiNC action [8]. For the present study we used
as parameters 323× 64, csw = 2.65, ω = 0.1, β = 5.5 [a = 0.074(2) fm] and analysed a subset
of available configurations starting from the flavor symmetric point along a line of constant single
quark mass corresponding to pion masses 465, 360 and 310 MeV [(κl,κs) = (0.120900,0.120900),
(0.121040,0.120620) and (0.121095,0.120512)]. We have measured two-point correlation func-
tions CπO(t) as function of a “time” t, where as source we used a smeared pion at rest and as sink
at t we used as O either a smeared pion or the operators appearing in the axial WI. Since sink and
source are time separated we do not have contributions from “contact” terms.

Individual correlation functions and several combinations of them are shown in Fig. 2 showing
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Figure 2: Correlation functions: (l) individual, (r) combinations at the flavor symmetric point as function of
the “time” separation t.

nicely the cancellation.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
3
8

Improving the lattice axial vector current A. Schiller

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 0.05 0.1 0.15 0.2 0.25

M
at
ri
x
el
em

en
ts

m2
π [GeV2]

preliminary

〈∂ · A〉
〈2mBP 〉
-〈2OC〉
〈OW 〉
〈Σ〉

- 〈Σ〉

120

130

140

150

160

170

180

190

0.05 0.1 0.15 0.2 0.25

Z
−
1

A
f π

[M
eV

]

m2
π [GeV2]

preliminary

∂ · A
Aloc

4

Figure 3: (l) The individual amplitudes and the check of the WI in (4.1) for different mπ , (r) Unrenormalised
pion decay constant as function of m2

π using the divergence of the point-split axial vector current and the local
axial vector current.

The correlators are fitted separately to get the different amplitudes, and then the amplitudes
are combined at bootstrap level to obtain bootstrap errors. In the left of Fig. 3 we present individual
averaged amplitudes and

〈Σ〉= 〈−∂ ·A+2mBP+2OC +OW 〉 (4.1)

as measure how accurate the lattice axial WI is fulfilled (using only nonzero distances in the fit
range) at the different pion masses. We conclude that the WI passes the nonperturbative check with
amazing precision.

The amplitude 〈∂ · A〉 with the point-split axial vector current is related to the pion decay
constant fπ . The unrenormalised fπ is obtained using the standard technique of ratios of two-point
functions to remove the smeared pseudoscalar source operator. In the right of Fig. 3 we present
the unrenormalised fπ in MeV derived from ∂ ·A as sink operator with the point-split axial vector
current for a subset of available configurations at the three pion masses. The results are compared to
a measurement using the local vector current Aloc

4 as sink with higher statistics. The results roughly
coincide with a tendency of a smaller fπ from the point-split current at smaller pion masses. A final
comparison will been performed using the same number of available configurations.

Determining the renormalised pion decay constant from the local axial vector current a renor-
malisation factor ZAloc = 0.873 has to be used [9]. There is the hope that the corresponding non-
perturbative Z factor for the point-split axial vector current is close to one what is true in one-loop
LPT using the Wilson gauge action and clover fermions with stout smeared links.

5. Short summary and outlook

We have proposed to use a point-split or one-link axial vector present in a lattice axial Ward
identity for clover fermions (2.3) instead of the more standard local axial vector violating the naive
axial WI with only local operators. The hope is to improve the accuracy in the measurements of
some hadronic properties using lattice methods.

We have checked in one-loop LPT that this WI is exact in one-loop LPT [partly up to O(a2)]
for those fermions. The renormalisation factor for the point-split axial vector current has been de-
termined for Wilson gauge action and clover fermions. We have discussed how the renormalisation
invariance of that WI is realised.
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A first nonperturbative check has been presented using correlators of a pion at rest with the
operators appearing in the WI. For our used lattice parameters at different pion masses the axial
WI is fulfilled to a very good accuracy.

As a first application we started to determine the (unrenormalised) pion decay constant using
the point-split axial vector current.

In the future we plan to check this axial WI at still lighter pion masses and other β ’s and to
measure the renormalised pion decay constant from the divergence of the point-split axial vector.
For that is is necessary to find ZAsplit nonperturbatively.

Further applications might be alternative κc determinations and the study of problems with
nonzero momentum transfer (formfactors).

Acknowledgements

The numerical configuration generation (using the BQCD lattice QCD program [10]) and
data analysis (using the Chroma software library [11]) was carried out on the IBM BlueGene/Q
using DIRAC 2 resources (EPCC, Edinburgh, UK), the BlueGene/P and Q at NIC (Jülich, Ger-
many) and the SGI ICE 8200 and Cray XC30 at HLRN (Berlin-Hannover, Germany). HP was
supported by DFG Grant No. SCHI 422/10-1. PELR was supported in part by the STFC under
contract ST/G00062X/1 and JMZ was supported by the Australian Research Council Grant No.
FT100100005 and DP140103067. We thank all funding agencies.

References
[1] M. Constantinou, PoS LATTICE 2014 (2015) 001 [arXiv:1411.0078 [hep-lat]].

[2] M. Bochicchio, L. Maiani, G. Martinelli, G. C. Rossi and M. Testa, Nucl. Phys. B 262 (1985) 331.

[3] T. Reisz and H. J. Rothe, Phys. Rev. D 62 (2000) 014504 [hep-lat/0003003].

[4] T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti and B. Yoon, arXiv:1502.07325 [hep-ph].

[5] S. Capitani, M. Göckeler, R. Horsley, H. Perlt, P. E. L. Rakow, G. Schierholz and A. Schiller, Nucl.
Phys. B 593 (2001) 183 [hep-lat/0007004].

[6] R. Horsley, H. Perlt, P. E. L. Rakow, G. Schierholz and A. Schiller, Phys. Rev. D 78 (2008) 054504
[arXiv:0807.0345 [hep-lat]].

[7] M. Constantinou, V. Lubicz, H. Panagopoulos and F. Stylianou, JHEP 0910 (2009) 064
[arXiv:0907.0381 [hep-lat]].

[8] N. Cundy et al., Phys. Rev. D 79 (2009) 094507 [arXiv:0901.3302 [hep-lat]].

[9] M. Constantinou, R. Horsley, H. Panagopoulos, H. Perlt, P. E. L. Rakow, G. Schierholz, A. Schiller
and J. M. Zanotti, Phys. Rev. D 91 (2015) 1, 014502 [arXiv:1408.6047 [hep-lat]].

[10] Y. Nakamura and H. Stüben, PoS LATTICE 2010 (2010) 040 [arXiv:1011.0199 [hep-lat]].

[11] R. G. Edwards and B. Joo [SciDAC and LHPC and UKQCD Collaborations], Nucl. Phys. Proc.
Suppl. 140 (2005) 832 [hep-lat/0409003].

7


