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1. Introduction

Quantum ChromoDynamics (QCD) is widely accepted as the theory of strong interactions
and, as such, must encode all the information needed to precisely draw the phase diagram in the
temperature (T ) - barion chemical potential (µB)-plane. As a matter of fact, only some corners of
it can be accessed by first-principle applications of QCD, in the perturbative or in the nonperturba-
tive regime. The region of the phase diagram where µB/(3T ). 1 is within the reach of the lattice
approach of QCD and one can therefore address, at least inside this region, the problem of deter-
mining the shape taken by the QCD pseudocritical line separating the hadronic from the deconfined
phase. There is no a priori argument for the coincidence of the QCD pseudocritical line with the
chemical freeze-out curve: if the deconfined phase is realized in the fireball, in cooling down the
system first re-hadronizes, then reaches the chemical freeze-out. This implies that the freeze-out
curve lies below the pseudocritical line in the µB-T plane. It is a common working hypothesis
that the delay between chemical freeze-out and rehadronization is so short that the two curves lie
close to each other and can therefore be compared. Under the assumptions of charge-conjugation
invariance at µB = 0 and analyticity around this point, the QCD pseudocritical line, as well as the
freeze-out curve, can be parameterized, at low baryon densities, by a lowest-order Taylor expansion
in the baryon chemical potential, as

T (µB)

Tc(0)
= 1−κ

(
µB

T (µB)

)2

, (1.1)

where Tc(0) and κ are, respectively, the pseudocritical temperature and the curvature at vanishing
baryon density.

As is well known direct Monte Carlo simulations of lattice QCD at nonzero baryon density are
hindered by the well known “sign problem”: SE becomes complex and the Boltzmann weight loses
its sense. Several ways out of this problem have been devised (see Ref. [1–4] for a review). In the
present work we use the approach of analytic continuation from imaginary chemical potential. Our
aim is to determine the continuum limit of the curvature κ of the pseudocritical line of QCD with
nf =2+1 staggered fermions at nonzero temperature and quark density. More details are reported in
Ref. [5].

The state-of-the-art of lattice determinations of the curvature κ , up to the very recent papers
of Ref. [6, 7], is summarized in Fig. 10 of Ref. [8]: depending on the lattice setup and on the
observable used to probe the transition, the value of κ can change even by almost a factor of three.
The lattice setup dependence stems from the kind of adopted discretization, the lattice size, the
choice of quark masses and chemical potentials, the procedure to circumvent the sign problem.
On the side of the determinations of the freeze-out curve, two recent determinations [9, 10] of κ ,
both based on the thermal-statistical model, but the latter of them including the effect of inelastic
collisions after freeze-out, give two quite different values of κ , each seeming to prefer a different
subset of lattice results (see Fig. 3 of Ref. [11] for a snapshot of the situation).

2. Numerical results

We perform simulations of lattice QCD with 2+1 flavors of rooted staggered quarks at imagi-
nary quark chemical potential. We have made use of the HISQ/tree action [12–14] as implemented
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in the publicly available MILC code [15], which has been suitably modified by us in order to intro-
duce an imaginary quark chemical potential µ = µB/3. In the present study we put µ = µl = µs,
with µl the light quark chemical potential and µs the strange quark chemical potential. This means
that the Euclidean partition function of the discretized theory reads

Z =
∫
[DU ]e−Sgauge ∏

q=u,d,s
det(Dq[U,µ])1/4 , (2.1)

where Sgauge is the Symanzik-improved gauge action and Dq[U,µ] is the staggered Dirac oper-
ator, modified for the inclusion of the imaginary quark chemical (see Ref. [13] and appendix A
of Ref. [14] for the precise definition of the gauge action and the covariant derivative for highly
improved staggered fermions).

We have simulated the theory at finite temperature, and for several values of the imaginary
quark chemical potential, near the transition temperature, adopting lattices of size 163×6, 243×6,
323× 8, 403× 10 and 483× 12. All simulations make use of the rational hybrid Monte Carlo
(RHMC) algorithm. The length of each RHMC trajectory has been set to 1.0 in molecular dynamics
time units. We have discarded typically not less than one thousand trajectories for each run and
have collected from 4k to 8k trajectories for measurements.

The pseudocritical point βc(µ
2) has been determined as the value for which the renormalized

disconnected susceptibility of the light quark chiral condensate divided by T 2 exhibits a peak.
The bare disconnected susceptibility is given by:

χl,disc =
n2

f

16L3
s Lt

{
〈
(
TrD−1

q
)2〉−〈TrD−1

q 〉2
}
, (2.2)

Here n f = 2 is the number of light flavors and Ls denotes the lattice size in the space direction. The
renormalized chiral susceptibility is defined as:

χl,ren =
1

Z2
m

χl,disc. (2.3)

The multiplicative renormalization factor Zm can be deduced from an analysis of the line of constant
physics for the light quark masses. More precisely, we have [14]:

Zm(β ) =
ml(β )

ml(β ∗)
, (2.4)

where the renormalization point β ∗ is chosen such that:

r1

a(β ∗)
= 2.37 , (2.5)

where the function a(β ) is discussed below.
To precisely localize the peak in χl,ren/T 2, a Lorentzian fit has been used. For illustrative

purposes, in Fig. 1 we display our determination of the pseudocritical couplings at µ/(πT ) = 0.2i
for all lattices considered in this work.

To get the ratios Tc(µ)/Tc(0), we fix the lattice spacing through the observables r1 and fK ,
following the discussion in the Appendix B of Ref. [16].
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Figure 1: The real part of the renormalized susceptibility of the light quark chiral condensate over T 2 on the
lattices 163×6, 323×8, 403×10 and 483×12 at µ/(πT ) = 0.2i. Full lines give the Lorentzian fits near the
peaks.

For the r1 scale the lattice spacing is given in terms of the r1 parameter as:

a
r1
(β )ml=0.05ms =

c0 f (β )+ c2(10/β ) f 3(β )

1+d2(10/β ) f 2(β )
, (2.6)

with c0 = 44.06, c2 = 272102, d2 = 4281, r1 = 0.3106(20) fm.
On the other hand, in the case of the fK scale we have:

a fK(β )ml=0.05ms =
cK

0 f (β )+ cK
2 (10/β ) f 3(β )

1+dK
2 (10/β ) f 2(β )

, (2.7)

with cK
0 = 7.66, cK

2 = 32911, dK
2 = 2388, r1 fK ' 0.1738. In Eqs. (2.6) and (2.7), f (β ) is the

two-loop beta function,

f (β ) = (b0(10/β ))−b1/(2b2
0) exp(−β/(20b0)) , (2.8)

b0 and b1 being its universal coefficients.
For all lattice sizes the behavior of Tc(µ)/Tc(0) can be nicely fitted with a linear function in

µ2,
Tc(µ)

Tc(0)
= 1+Rq

(
iµ

πTc(µ)

)2

, (2.9)

which gives us access to the curvature Rq and, hence, to the curvature parameter κ = −Rq/(9π2)

introduced in Eq. (1.1). On the 243×6 lattice the linearity in µ2 has been assumed to hold, in order
to extract Rq from the only available determination at µ/(πT ) = 0.2i.
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Figure 2: Determinations of the curvature Rq on the lattices 243×6, 323×8, 403×10, 483×12, and from
the two different methods to set the scale, versus 1/L2

t . The dashed horizontal line gives the result of the fit
to all data with a constant; the solid horizontal lines indicate the uncertainty on this constant.

For the sake of the extrapolation to the continuum limit, in Fig. 2 we report our determinations
of Rq on the lattices 243×6, 323×8, 403×10, 483×12, and from the two different methods to set
the scale, versus 1/L2

t .
Within our accuracy, cutoff effects on Rq are negligible, so that a constant fit works well over

the whole region (χ2
r ' 0.99), thus including also the smallest 243×6 lattice. Taking into account

the uncertainties due to the continuum limit extrapolation,

κ = 0.020(4) . (2.10)

Therefore we can conclude that, within the accuracy of our determinations, cutoff effects on the
curvature are negligible already on the lattice with temporal size Lt = 6. Our determination of
the curvature parameter, κ=0.020(4), is indeed compatible with the value quoted in our previous
paper [11], κ=0.018(4), without the extrapolation to the continuum.

Finally it is interesting to extrapolate the critical line as determined in this work to the region
of real baryon density and compare it with the freeze-out curves resulting from a few phenomeno-
logical analyses of relativistic heavy-ion collisions. This is done in Fig. 3, where we report two
different estimates. The first is from the analysis of Ref. [9], based on the standard statistical
hadronization model, where the freeze-out curve is parametrized as

Tc(µB) = a−bµ
2
B− cµ

4
B , (2.11)

with a = 0.166(2) GeV, b = 0.139(16) GeV−1, and c = 0.053(21) GeV−3. The second estimate is
from Ref. [17] and is based on the analysis of susceptibilities of the (conserved) baryon and electric
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Figure 3: Tc(µB) versus µB (units in GeV). Experimental values of Tc(µB) are taken from Fig. 1 of Ref. [9]
(black circles) and from Fig. 3 of Ref. [17] (green triangles), for the standard hadronization model and for
the susceptibilities of conserved charges respectively. The dashed line is a parametrization corresponding to
Tc(µB) = Tc(0)−bµ2

B with Tc(0) = 0.154(9)GeV and b = 0.128(25)GeV−1 . The solid lines represent the
corresponding error band.

charges. In fact, our critical line is in nice agreement with all the freeze-out points of Refs. [9, 17].
In particular, using our estimate of the curvature, Eq. (2.10), we get b = 0.128(25) GeV−1, in very
good agreement with the quoted phenomenological value.

Some caveats are in order here. We do not expect our critical line to be reliable too far from
µ = 0: as a rule of thumb, we can trust it up to real quark chemical potentials of the same order of
the modulus of the largest imaginary chemical potential included in the fit (2.9), i.e. |µ|/(πT ) =
0.25. This translates to real baryon chemical potentials in the region µB/T . 0.25. Moreover, the
effect of taking µs = µl instead of µs < µl should become visible on the shape of the critical line as
we move away from µ = 0 in the region of real baryon densities, thus reducing further the region
of reliability of our critical line. So, from a prudential point of view, the agreement shown in Fig. 3
could be considered the fortunate combination of different kinds of systematic effects. We cannot
however exclude the possibility that the message from Fig. 3 is to be interpreted in positive sense,
i.e. the setup we adopted and the observable we considered may catch better some features of the
crossover transition, thus explaining the nice comparison with freeze-out data. Indeed, our result
for the continuum extrapolation of the curvature κ is in fair agreements with the recent estimates
in Ref. [6], where both setup µs = µl and µs = 0 were adopted, and Ref. [7], where the strangeness
neutral trajectories were determined from lattice simulations by imposing 〈nS〉= 0.
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