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1. The critical line of QCD and the method of analytic continuation

The study of the behaviour of strongly interacting matter in extreme conditions is of the utmost
interest for several reasons, the physics of compact stars and the early universe being examples of
natural situations where it plays a crucial role. On the experimental side, heavy ion experiments can
be used to probe the phase diagram of QCD. Unfortunately, very little is known from the theoretical
point of view about the QCD phase diagram at nonzero baryon density, because at present (due to
the infamous sign problem) there are no reliable tools to make predictions from first principles
about those conditions. On the other hand, at zero density and finite temperature lattice simulations
have reliably confirmed the existence of a smooth crossover between a confined phase, where chiral
symmetry is broken, and a deconfined phase where chiral symmetry is restored. It is then possible
to define a pseudo-critical temperature(1) Tc, which identifies the position of the crossover.

It is reasonable to expect that, for small values of the baryon chemical potential µB, this pic-
ture still holds: we can thus define the critical line of QCD as the region in the phase diagram for
which T = Tc(µB). For small values of µB it has also been possible to study Tc(µB) at the phys-
ical point with two main methods to circumvent the sign problem, namely the Taylor expansion
approach[1, 2, 3] and analytic continuation from an imaginary chemical potential [4], which was
recently employed in [5, 6] and in the work presented here [7]. Given the invariance of QCD under
charge conjugation and expecting analyticity in µB, the behaviour of Tc with µB should be of the
form

Tc(µB)

Tc
= 1−κ

(
µB

Tc(µB)

)2

+O(µ4
B,I) = 1+κ

(
µB,I

Tc(µB,I)

)2

+O(µ4
B,I) , (1.1)

where, in the last part of the equation, the imaginary baryon chemical potential µB,I = −iµB has
been introduced. The main goal of the present work is to determine the coefficient κ , the curvature
of the pseudocritical (or crossover) line of QCD, performing a thorough analysis of the systematics
involved to obtain a reliable continuum extrapolated value.
We mainly run simulations at zero strange quark chemical potential, µs = 0. In the aim of compar-
ing our results with the ones coming from heavy ion collision experiments (where the strangeness
S is zero), this is not a priori the right setup: the interactions give nonzero cross susceptibilities
∂ns/∂ µl , and in order to achieve strangeness neutrality we should fine-tune the values of µl and µs

to have S = 0 (e.g. at T = Tc the strangeness neutrality condition would require µs ' 0.25µl [8]).
In view of this, we decided to check what is the effect of a nonzero µs in a range which covers the
strangeness neutrality condition, studying also the setup µs = µl .

2. Observables

For the determination of the critical temperature as a function of the chemical potential, we
used 3 different prescriptions based on 3 different chiral observables, namely the chiral condensate
renormalized in two different ways (introduced in [9] and [3], respectively) and the full renormal-

1The definition has a certain level of arbitrarity, as it will be clarified in the next section.
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ized chiral susceptibility [10], defined as follows:

〈ψ̄ψ〉r(1)(T ) ≡
〈ψ̄ψ〉ud(T )− 2mud

ms
〈s̄s〉(T )

〈ψ̄ψ〉ud(0)− 2mud
ms
〈s̄s〉(0)

(2.1)

〈ψ̄ψ〉r(2)(T ) ≡
mud

m4
π

(〈ψ̄ψ〉ud−〈ψ̄ψ〉ud(0)) (2.2)

χ
r
ψ̄ψ(T ) ≡

m2
ud

m4
π

[
χψ̄ψ(T )−χψ̄ψ(0)

]
. (2.3)

We take the crossover temperature at the inflection point for the condensates, and at the maximum
in the case of the chiral susceptibility, locating these points by a fitting procedure (see Fig.1). The
data for the renormalized chiral condensate(s) has been fitted with the function

〈ψ̄ψ〉r(T ) = A1 +B1 arctan [C1 (T −Tc)] , (2.4)

while for the renormalized chiral susceptibility we opted for a Lorentzian form:

χ
r
ψ̄ψ(T ) =

A2

(T −Tc)2 +B2
2
. (2.5)

These prescriptions to locate the pseudocritical temperature are faithful, in the sense that in
the case of a real phase transition they would yield the corresponding critical temperature. The
procedure we have followed is to determine Tc for a number of values of µB,I and fit the data points
with the expression in Eq.(1.1) to obtain κ .
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Figure 1: Dependence of the renormalized observables on the temperature. The result of the fit with the
functions (2.4) and (2.5) is also plotted. (from [7]). Left: renormalized chiral condensate 〈ψ̄ψ〉r(1). Right:
renormalized chiral susceptibility χr

ψ̄ψ .

3. Numerical setup

We simulated the theory on the lattice using a tree level Symanzik improved gauge action and
a root-staggered stout improvement for the fermion part of the action, at the physical point. In or-
der to do this, we tuned the quark masses as a function of β following the line of constant physics
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obtained in [11] (see [7] for details).

For finite size effects, we refer to the analysis already done in a previous study [7]. In that
work, using data coming from Nt = 6 lattices, we have shown that finite size effects are negligi-
ble on lattices having aspect ratio ≥ 4. For this reason, we have since then run simulations on
323× 8, 403× 10 and 483× 12 lattices in order to perform a continuum limit extrapolation of κ

in the setup µs = 0. To calculate renormalized observables we also had to measure bare quantities
at zero temperature. This was performed on 324 and 484 lattices for sparse values of β , and the
full dependence of the bare zero-temperature observables on the coupling was obtained through a
suitable interpolation. Moreover, in order to investigate the effect of a nonzero µs, on the 323× 8
lattice we have studied the setup µs = µl and µs = 0, for several values of µl .

4. Numerical results

In order to check the systematics involved in the continuum limit we performed this in two
ways, namely on the curvature κ directly or on the observables. The second procedure yields
continuum extrapolated values of Tc(µB), which are fitted giving a second estimate of the curvature
in the continuum limit.

A little remark about uncertainties is in order. The procedure explained in section 2 to locate
the critical temperature requires a fit whose result is dependent both on the choice of the fit range
and on the form of the function used. We assessed the systematic errors on Tc(µB) by varying the
fit range and changing the function used in the fit to a similar one, while the statistical uncertainties
were estimated making use of a boostrap analysis.

4.1 The effect of a nonzero µs

In Fig. 2 we show our results about the effect of a nonzero µs. The same figure shows also the
results for κ that one can obtain trying different fitting strategies, that is varying the form (quadratic
or quartic in µI), and varying the upper limit of the fit range.

The result of this analysis is that, up to the present level of accuracy, the values of κ obtained
in the µs = 0 and µs = µl cases are compatible if a quartic term in µl,I is taken into consideration on
the latter situation. In fact, omitting that term and fitting the data for µs = µl just with a quadratic
expression, the obtained χ2/ndo f is 2.4, while including that term χ2/ndo f 6 1. If we restrict
ourselves to a quadratic expression, we see that in the case µs = µl the result for κ is not stable
with the fit range: if we reduce the fit range to small values of µ we obtain, again, compatible
values for the curvature from the µs = µl and the µs = 0 cases. For this reason, we don’t expect
the curvature measured in the strangeness neutrality condition to be significantly different from the
value obtained in our work.

4.2 The continuum limit

With the first procedure we calculated a value of the curvature for each value of Nt (6,8,10
and 12) and extrapolated to the continuum limit assuming corrections of order 1/N2

t . We ob-
tained κ = 0.0134(13),0.0127(14),0.0132(10) from the renormalized chiral condensate I, II and
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Figure 2: The effect of the inclusion of a nonzero chemical potential. Left: the critical line in the two
cases, µs = 0 (red) and µs = µl (black). Right: analysis of the dependence of the estimate of the curvature
κ on the upper fit range limit µ

(max)
l,I (see explanation in the main text). Black data points refer to the µs = 0

setup while Red data points refer to the µs = µl case. Filled symbols refer to quartic fits in µl,I while empty
symbols show the results for quadratic fits in µl,I . The data points on the right are the result of a combined
fit (quartic for the µs = µl case, and quadratic for µs = 0) on all data points available.

the renormalized chiral susceptibility respectively; this procedure is shown in Fig. 5.
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Figure 3: Continuum limit of the observables. Left: renormalized chiral condensate (Eq. 2.1). Right :
critical lines in the µl,I versus T plane obtained with the method of continuum extrapolated observables.

With the second procedure, instead, we assumed a dependence of the observables of the kind
shown in Eqs. (2.4) and (2.5), where all or part of the coefficient are assumed to have a depen-
dence on the lattice spacing in the form const + a/N2

t
(2). By making use of data from Nt = 8,10

and 12 lattices we obtained the continuum extrapolated values of the observables as a function of
T , as shown in Figs. 3 and 4, as well as a continuum extrapolated estimate of Tc. We then fitted
the Tc(µ) with the form of Eq.(1.1) and obtained κ = 0.0145(11),0.0138(10),0.0131(12) from

2More precisely, we assumed such dependence for all the coefficients in Eq.(2.5) for the chiral susceptibility, while
for the chiral condensates such dependence was assumed only on the Tc and C1 parameters in Eq.(2.4).
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Figure 4: Continuum limit of the observables, from the renormalized chiral susceptibility (Eq. 2.3). Left:
renormalized chiral susceptibility as a function of T . Righ: behaviour of the height χ
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of the peak of the susceptibility as a function of the chemical potential.

〈ψ̄ψ〉r(1), 〈ψ̄ψ〉r(2), and χr
ψ̄ψ respectively: this procedure is shown in Fig. 3, and we notice that

these results are compatible with the ones obtained with the first method.

As a byproduct of this second procedure, we got also continuum limit estimates of the witdh
and the height of the peak of the susceptibility as a function of the imaginary chemical potential,
which are shown in Fig. 4. In the spirit of analytic continuation, this information could give hints
for or against a critical point for real chemical potential. While our data don’t show any influence
of a possible endpoint nearby, it must be said that the Roberge-Weiss endpoint (which, in the setup
with µs = 0, lies at µl,I/(πT )∼ 0.45 [7]) seems not to have any influence on these quantities either.

As a conclusion of our work, considering also the uncertainty derived from the strangeness
neutrality issue, we give κ = 0.0135(20) as a prudential estimate of the curvature of the chiral
crossover line. In Fig. 5 we show the comparison of our value with the ones obtained in the recent
literature at the physical point. While it appears that that there is “tension” between the results
with the Taylor expansion method (the upper 4 points in the plot) and the ones obtained with
analytic continuation (the others), it must be noted that the discrepancy is significantly reduced if
one considers only the most recent results.
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