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We discuss the QCD critical point at finite density through the study of many flavor QCD, in which
two light flavors and N f massive flavors exist. Performing simulations of QCD with two flavors
of improved Wilson fermions, we calculate the probability distribution function of a generalized
plaquette in many flavor QCD at finite temperature and density. The dynamical effects of massive
flavors and the chemical potential are incorporated using the reweighting technique. From the
shape of the distribution functions, we determine the critical surface separating the first order
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chemical potential increases in the (2+N f ) flavor QCD. The indication to the (2+1) flavor QCD
is then discussed.
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1. Introduction

One of the most interesting topics among the study of QCD is to find the critical point at
finite temperature and density. While the chiral phase transition at the physical quark masses is
considered to be crossover at low density, it is expected to change into a first order transition
at the critical density. Since the study in the high density region is difficult because of the sign
problem, it will be important to investigate the boundary of the first order transition at low density
in the quark mass parameter space of (2+1) flavor QCD, using the property that the nature of the
transition changes also with the quark mass. From the information about the boundary of the first
order region, it may be possible to extrapolate the boundary to the high density region for the
determination of the critical point in the real world. The standard expectation of the critical surface
is illustrated in the left panel of Fig. 1 as a function of the light quark mass ml , the strange quark
mass mh and the chemical potential µ . The critical surface is indicated by the red curves. The light
quark side is the first order region and the heavy quark side is the crossover region. The black line
represents physical quark mass. Recent lattice QCD studies suggest that the first order region near
the massless limit is very small at zero density. Hence, the determination of the critical surface may
be difficult.

In this paper, we study a system in which two light quarks and N f heavy quarks exist. Perform-
ing simulations of QCD with two flavors of improved Wilson fermions, we determine the boundary
of the first order region in many flavor QCD at finite temperature and density. The reweighting tech-
nique is used together with a hopping parameter expansion to incorporate the dynamical effects of
massive flavors and the chemical potential. To use the hopping parameter expansion, the hopping
parameter, i.e. the inverse quark mass, must be small. In Ref. [1], the critical heavy quark mass is
found to increase as N f increases and the endpoint of the first order transition can be investigated
in the heavy quark region, where the hopping parameter expansion works well, for large N f . We
illustrate the quark mass dependence of the nature of phase transitions in Fig. 1 (middle) for (2+N f )
flavor QCD, where ml and mh are the masses of light flavors and N f flavors. The yellow regions
are the first order regions and the green curves are the second order critical lines. Moreover, we
will show in this paper that the critical mh increases as µ increases. This suggests that we may deal
with the critical curve even for (2+1) flavor in the case that the critical mass is heavy at large µ .
Through the study of (2+N f ) flavor QCD, we discuss the QCD critical point at finite density.

In the next section, we explain a histogram method to identify the nature of the phase transi-
tions. We then show our numerical results about the boundary of the first order phase transition at
finite density in Sec. 3. The conclusions are given in Sec. 4.

2. Histogram method

We study the system where two light flavors and N f heavy flavors exist. The hopping param-
eter and the quark chemical potential are κl , µl for the light flavor and κh, µh for the heavy flavor,
respectively. To investigate the nature of phase transitions, we consider the probability distribution
function of the average plaquette,

w(P;β ,κl,µl,κh,µh) =

∫
DUδ

(
P− P̂

)
e6βNsiteP̂ (detM(κl,µl))

2 (detM(κh,µh))
N f , (2.1)

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
4
6

Many flavor approach to study the critical point in finite density QCD Ryo Iwami

Critical point

QuenchedN = 2 QCD
××××

ud

h

  1 st

  1 st

 N ,µ → largef

f

  2 nd

h

 0

 500

 1000

 1500

 1.4  1.5  1.6  1.7

ln
 R—

P

 

h=0.1
h=0.2
h=0.3

Figure 1: Left: The critical surface in the (ml ,mh,µ) space. Middle: Quark mass dependence of the nature
of finite temperature phase transition for (2+N f ) flavor QCD. Right: ln R̄ as a function of P for h = 0.1
(red), 0.2 (blue) and 0.3 (green) at µl = µh = 0.

where M is the quark matrix, Nsite ≡ N3
s ×Nt is the number of sites, and β = 6/g2

0 is the coupling
constant. P̂ is defined from the gauge action Sg as P̂ =−Sg/(6Nsiteβ ) and is called the generalized
plaquette. δ (P− P̂) is the delta function, which constrains the operator P̂ to P. We use the delta
function approximated by δ (x) ≈ 1/(∆

√
π) exp[−(x/∆)2], where ∆ = 0.00025 is adopted in this

study. For convenience, we define the effective potential as Veff(P)≡− lnw(P). It is rewritten as

Veff(P;β ,κl,µl,κh,µh) = V0(P;β0,κl)− lnR(P;β ,β0,κl,µl,κh,µh) (2.2)

with the potential of two flavor at µl = 0, V0(P;β0,κl), and

lnR(P) = 6(β −β0)NsiteP+ ln

⟨(
detM(κl,µl)

detM(κl,0)

)2(detM(κh,µh)

detM(0,0)

)N f
⟩

(P;fixed)

, (2.3)

where ⟨· · ·⟩(P;fixed) =
⟨
δ (P− P̂) · · ·

⟩
(β0,κl)

/
⟨
δ (P− P̂)

⟩
(β0,κl)

. ⟨· · ·⟩(β0,κl) means the ensemble aver-
age over two flavor configurations generated at β0, κl and vanishing µl . β may differ from β0.

We evaluate the quark determinant of N f flavors in R(P) with the leading order of the hopping
parameter expansion for the standard Wilson action [2].

ln
[

detM(κh,µh)

detM(0,0)

]
= 288Nsiteκ4

h P̂+12N3
s (2κh)

Nt
(
cosh(µh/T )Ω̂R + isinh(µh/T )Ω̂I

)
+ · · · ,(2.4)

where Ω̂R and Ω̂I are the real and imaginary parts of the Polyakov loop. This approximation is valid
when κh is small or the quark is heavy. Note that no expansion in terms of µh/T is performed. On
the other hand, the quark determinant of light flavors is computed by a Taylor expansion in terms
of µl [3, 4, 5], i.e.

ln
[

detM(κl,µl)

detM(κl,0)

]
≈

Nmax

∑
n=1

1
n!

[
∂ n(lndetM(κl,µ))

∂ (µ/T )n

]
µ=0

(µl

T

)n
. (2.5)

Because the sign problem is serious for the calculation of R(P) at high density, the method dis-
cussed in Ref. [4, 5] is used to avoid the sign problem,

R(P) =
⟨

eF̂
⟩
(P:fixed)

⟨
eiθ̂

⟩
(P,F :fixed)

≈
⟨

eF̂
⟩
(P:fixed)

exp
(
−1

2
⟨θ̂ 2⟩(P:fixed)

)
, (2.6)
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where F̂ = ln
(∣∣∣detM(µl)

detM(0)

∣∣∣2 ∣∣∣detM(µh)
detM(0)

∣∣∣Nf
)

and θ̂ is the complex phase of
(

detM(µl)
detM(0)

)2(detM(µh)
detM(0)

)Nf
. In

this analysis, we assume that the distribution of θ̂ is well approximated by a Gaussian function and
the higher order cumulants can be neglected.

The first term of Eq. (2.4) that is proportional to P̂ can be absorbed into the gauge action
by shifting β → β ∗ ≡ β + 48N f κ4

h . The reweighting factor is written as lnR(P;β ,κh,µh) =

ln R̄(P;h,µh)+(plaquette term)+O(κNt+2
h ) for µl = 0, for example, with

R̄(P;h,µh) =
⟨

exp
[
6hN3

s

(
Ω̂R + i tanh

(µh

T

)
Ω̂I

)]⟩
(P:fixed,β0)

(2.7)

where h = 2N f (2κh)
Nt cosh(µh/T ). R̄(P;h,µh) depends on the parameters only through β ∗, h and

tanh(µh/T ). The second term is the complex phase of the reweighting factor, which is proportional
to tanh(µh/T ). Because | tanh(µh/T )| is smaller than one, the tanh(µh/T ) dependence can be
easily controlled [2].

We then find the critical h, at which the first order transition terminates, instead of the critical
κh. At a first order transition point, Veff shows a double-well shape as a function of P, and equiv-
alently the curvature of the potential d2Veff/dP2 is negative around the center of the double-well
potential. Moreover, the curvature d2Veff/dP2 is independent of β , since β appears only in the
linear term of P in the right hand side of Eq. (2.3). Although β must be adjusted to the first order
transition point to observe the double-well potential, the fine tuning is not necessary if we investi-
gate the curvature [4]. Hence, we investigate the curvature of the potential and find the boundary
of the first order phase transition. The curvature is given by

d2Veff

dP2 (P) =
d2V0

dP2 (P)− d ln R̄
dP2 (P). (2.8)

The curvature of the two flavor effective potential V0 can be estimated from the relation between
the plaquette susceptibility χP = 6Nsite⟨(P̂−⟨P̂⟩)2⟩ and the curvature of the potential,

d2V0

dP2 =
6Nsite

χP
, (2.9)

assuming the Gaussian distribution. Because the finite temperature transition is crossover for two
flavor QCD with finite quark mass, the distribution function is expected to be Gaussian. The
second derivative d2 lnR/dP2 is computed by fitting the data of ln R̄ to a sixth degree function.
After finding the critical h for each κl , µl and tanh(µh/T ), we determine the critical κh from the
equation h = 2N f (2κh)

Nt cosh(µh/T ).

3. Chemical potential dependence of the critical mass in (2+N f ) flavor QCD

We have performed simulations of QCD with degenerate two flavor O(a)-improved Wilson
quark and RG-improved Iwasaki gauge actions at zero density in Ref. [6]. The lattice size Nsite

is 163 × 4. We adopt four hopping parameters of light quarks κl and 25 to 32 β values at each
κl , which cover the pseudo-critical β , and 10,000 to 40,000 trajectories have been accumulated at
each simulation point. The details of the simulation parameter are shown in Ref. [6]. Among the
configurations, the finite density analysis is carried out with κl = 0.1450 and 0.1475. We use 500
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Figure 2: The curvatures of Veff for h = 0.1,0.2,0.3 at µl = µh = 0 (left), for µl/T = 0.0,0.8,1.0,1.2 at
h = 0.2 with µh = 0 (middle), and for µh/T = 0.0,0.55,1.47,∞ at h = 0.2 with µl = 0 (right).
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Figure 3: The critical points hc as functions of µl/T for µh/T = 0.00 (black), 0.55 (blue) and ∞ (red) at κl

= 0.1475 (left) and 0.1450 (right).

configurations taken every 10 trajectories at each simulation point. The light quark determinant is
evaluated up to O(µ2

l ), i.e. Nmax = 2 in Eq. (2.5). We have carried out the zero temperature simu-
lations on 163 ×32 lattices to determine the pseudo-scalar and vector meson mass ratio (mPS/mV)

and the quark mass (mpcaca) at the psuedo-critical point. These two values of κl = 0.1450,0.1475
correspond to mPS/mV = 0.66,0.58 and mpcaca = 0.053,0.035, respectively.

The right panel of Fig. 1 shows the results of ln R̄(P) at κl = 0.145 and µl = µh = 0 for
h = 0.1,0.2 and 0.3. ln R̄(P) increases rapidly around P ≈ 1.6 and the gradient becomes lager
as h increases. The second derivatives d2 ln R̄/dP2 is calculated by fitting the data of ln R̄ to a
sextic polynomial of P and d2V0/dP2 is computed from χP as explained in Sec. 2. The results of
d2Veff/dP2 are plotted in the left panel of Fig. 2 for h = 0.1,0.2 and h = 0.3 at κl = 0.145 and
µl = µh = 0. This figure shows that d2Veff/dP2 is positive for all P at small h, while d2Veff/dP2
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Figure 4: The critical surface in the (κc
hN1/Nt

f ,µl/T,µh/T ) space at κl = 0.1475 (left) and 0.1450 (right).

becomes negative in a range of P at h = 0.3. This indicates that the phase transition changes from
crossover to first order between h = 0.2 and 0.3.

On the other hand, the first order transition arises also at large µl and µh even when h is small.
The middle and right panels of Fig. 2 show the µl and µh dependence of the curvature of Veff with
h = 0.2 and κl = 0.145. The curvature becomes negative in a range of P at large µl or µh. We
determine the critical value of h, hc, at which the negative curvature appears. The preliminary
results of hc are shown in the left and right panels of Fig. 3 as functions of µl for κl = 0.145 and
0.1475, respectively. The shape of effective potential is double well in the first order region above
hc. The systematic error which arise in this analysis has not been estimated yet. The error bar
represents the statistical error only.

Because we have used the approximation by Taylor expansion up to O(µ2
l ), the analysis is

valid only in the region where µl/T is small. On the other hand, the µh dependence is easy to
investigate, since | tanh(µh/T )| is smaller than one. The results of “µh/T = ∞” mean those of
tanh(µh/T ) = 1. It is found that the first order region becomes wider as µl and µh increase. The
qualitative behavior, i.e. hc decreases as µl increases, is consistent with the previous results ob-
tained by an improved staggered fermion action [1]. However, the difference from the result of
hc by the staggered fermion is not small quantitatively. Although the systematic error is not yet
estimated, the discretization error of our result by the Nt = 4 lattice may be large.

Another interesting point is that the critical value hc is less dependent on tanh(µh/T ). The
difference between the results of tanh(µh/T ) = 0 and 1 is only about 30%. This situation is similar
to the case of the critical surface in the heavy quark region [2]. Although the change of hc is small,
the critical κh changes as µh increases, of course. Rewriting h as

κhN1/Nt
f =

1
2

(
h

2cosh(µh/T )

)1/Nt

→ 1
2

h1/Nt e−µh/(Nt T ) for
(µh

T
≫ 1

)
, (3.1)

one finds that the critical κh decreases exponentially as µh for large µh when tanh(µh/T ) depen-
dence of hc is small. We then plot the critical value of κc

hN1/Nt
f in Fig. 4 as a function of µl/T and

µh/T translating Fig. 3.
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Because the approximation of O((µl/T )2) is used, µl/T must be small in this analysis, whereas,
the critical points are determined for 0 ≤ tanh(µh/T ) ≤ 1, i.e. 0 ≤ µh/T ≤ ∞. Then, the critical
value of κc

hN1/Nt
f decreases with µh/T exponentially. This result derives an important consequence.

To apply the hopping parameter expansion, we assume κh to be small. This condition is always
valid for large N f even if the critical h is large. However, for large µh, N f is not needed to be
large because κc

hN1/Nt
f is no longer large. This means the analysis based on the hopping parameter

expansion can be applied for small N f . If we assume that the hopping parameter expansion is valid
when the critical κh is smaller than 0.1, for example, one can investigate the critical value of κh

at µh/T > 5.0 in (2+ 1) QCD, i.e. N f = 1. Thus, the critical surface of (2+ 1) flavor QCD can
be studied when the density of strange quark is very large in our approach. This suggests that the
extrapolation from the high strange quark density region may be a possible way to determine the
QCD critical point.

4. Conclusions

We studied the phase structure of the many flavor system, in which two light flavors and N f

massive flavors exist, performing simulations of two flavor QCD with improved Wilson fermions
and using the hopping parameter expansion of the heavy quarks. Through the shape of the distribu-
tion functions, we determined the critical surface separating the first order transition and crossover
regions. It is found that the critical mass of the massive quarks becomes larger as the chemical
potential increases. Because we approximate the light quark determinant by a Taylor expansion
in terms of the light quark chemical potential µl , the application range of µl is limited to a small
region. On the other hand, the heavy quark chemical potential µh can be controlled in a wide range,
and it is found that the critical κh decreases exponentially with µh at large µh. Since the critical
κh is sufficiently small at large µh, the hopping parameter expansion is applicable even for (2+1)
flavor. This conclusion about the critical κh at large µh is valid for (2+1) flavor QCD.
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