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1. Introduction

Since the outstanding work by Pisarski and Wilczek [1], clarifying the nature of chiral phase
transition of massless two flavor QCD has been one of the central problems in QCD. The nature
crucially depends on the presence of the flavor singlet axial symmetry UA(1) at Tc [1], and the
nature itself and the effective restoration of UA(1) above Tc are under active investigation [2, 3, 4,
5, 6, 7, 8]. Clarifying this point is important not only for understanding the phase structure of QCD
but also for the axion dark matter scenario. The axion abundance is essentially determined by the
temperature dependence of the topological susceptibility χt , which vanishes when UA(1) symmetry
is effectively and fully restored. If χt vanishes very rapidly right above Tc, too much axions would
be produced, and the axion dark matter scenario becomes hard or is even excluded, depending on
how rapidly it happens [9]. The lattice studies of the axion dark matter scenario recently began in
the quenched approximation [9, 10, 11].
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Figure 1: Basic idea of many flavor approach.

In this work, we apply the approach proposed in Ref. [12]. The essential idea is depicted
in Fig. 1. Figure 1 (a) shows the so-called Columbia plot for 2+1 flavor QCD. There are two
distinct first order regions lying around the quenched limit (mud = ms = ∞) and the chiral limit
of three flavor QCD (mud = ms = 0), respectively. In the following, we focus only on the latter.
The question is whether the massless two flavor QCD point (mud = 0 and ms = ∞) is inside the
first order region or not. If we could trace the critical line (solid or dotted curve), the question is
resolved. However, it is difficult as the critical line is located in the small quark mass region.

The situation becomes tractable by adding extra flavors. Figure 1 (b) represents the expected
Columbia plot for 2+N f flavor QCD, where mh denotes the mass of extra N f flavors. In this case, the
critical line moves upward, and for sufficiently large N f the critical line becomes reachable by the
hopping parameter expansion (HPE) [12]. If the critical heavy mass mc

h(mud) turns out to remain
finite in the mud → 0 limit, it immediately means that massless two flavor QCD corresponding to
the point (mud ,mh) = (0,∞) is the outside of the first order region. An important remark is that, in
the limit of ms → ∞ or mh → ∞, both of 2+1 and 2+N f flavor QCD end up with the same two flavor
QCD. Thus, the original question is simplified to whether the critical heavy mass in the chiral limit
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of two flavors stays finite or not. In the following, we briefly describe our approach and the result.
For details, pleasee see the full paper [13].

2. method

Two flavor configurations at finite temperatures are generated following the standard Hybrid
Monte Carlo method at four values of two flavor mass. The effective potential V is obtained from
the probability distribution function (PDF) w for the generalized plaquette P [14, 15, 16, 12] as

V (P;β ,κl,κh,N f ) = − lnw(P;β ,κl,κh,N f ) (2.1)

w(P;β ,κl,κh,N f ) =

∫
DU δ (P− P̂)

[
detM(κh)

]N f e−Sgauge(β )−Slight(κl), (2.2)

P̂ = c0ŴP +2c1ŴR , (2.3)

where Sgauge(β ) = 6Nsite β
{
(c0 + 2c1)− P̂

}
and Slight(κl) are the lattice actions for the gauge

field and two flavors of light quarks, respectively. ŴP and ŴR denote the averaged plaquette and
rectangle, respectively, and c0 and c1 satisfying c0 = 1−8c1 are the improvement coefficients for
lattice gauge action. M(κh) is the quark matrix for heavy flavors. When measuring the PDF, N f

flavors of extra heavy quarks are introduced in the form of the hopping parameter expansion (HPE)
via the reweighting method as shown later.

We separate the effective potential into two parts for convenience as

V (P;βref,κl,κh,N f ) = Vlight(P;βref,κl)− lnR(P;βref,κl,κh,N f ) . (2.4)

Here and hereafter, terms independent of P are ignored, because we are interested in the differen-
tiation of the potential with regard to P. The first term is defined by

Vlight(P;βref,κl) =− lnw(P;β ,κl,0,0)−6Nsite (βref −β )P (2.5)

and represents the constraint effective potential in two flavor QCD system. The second term of
eq. (2.4) is defined by

R(P;βref,κl,κh,N f ) =
⟨
[detM(κh)]

N f
⟩

P:fixed,(βref,κl)
, (2.6)

⟨· · · ⟩P:fixed,(βref,κl) ≡
⟨δ (P− P̂) · · · ⟩(βref,κl)

⟨δ (P− P̂)⟩(βref,κl)

, (2.7)

where ⟨· · · ⟩(β ,κl) denotes the ensemble average over two flavor configurations generated with β and
κl . Then, assuming the unimproved Wilson Dirac operator for M(κh) with a sufficiently small κh

and Nt = 4, lnR in eq. (2.4) can be approximated as

lnR(P;κl,h) ≈ ln
⟨
exp

(
6N3

s hŶ
)⟩

P:fixed,(β ,κl)
(2.8)

= 9Nsite
h
c0

P+ lnR′(P;κl,h) (2.9)

where

lnR′(P;κl,h) = ln
⟨
exp

(
6N3

s hẐ
)⟩

P:fixed,(β ,κl)
. (2.10)
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Figure 2: lnR′ at κl = 0.145 (left) and 0.1505 (right). The results at h=0.2 to 0.4 are shown.

In the above, the following quantities have been introduced,

h = 2N f (2κh)
4 , Ŷ = 6ŴP + L̂ , Ẑ =−12c1

c0
ŴR + L̂ , (2.11)

with L the real part of Polyakov loop averaged over the spatial volume. Although eqs. (2.8) and
(2.9) are algebraically identical, the equality is not necessarily trivial in numerical data because the
δ function is approximated by

δ (x)≈ 1/(∆
√

π)exp[−(x/∆)2] . (2.12)

Thus, both expressions are examined to check the consistency. At this order of the HPE, the number
of extra heavy flavors (N f ) and their mass parameter (κh) appear only in a single parameter h. The
nature of the phase transition is identified by the shape of the constraint effective potential, i.e.
single- or double-well, at T = Tc. By scanning h, we determine the critical value hc, at which the
first order and the crossover regions are separated.

With our definition of the PDF, one can prove that the curvature of the effective potential is
independent of βref [14, 12], which greatly simplifies the analysis (For detail, see Ref. [13]). By
looking at the light quark mass dependence of hc(κl), we try to extract hc in the chiral limit.

3. results

Following Ref. [17], we take the Iwasaki gauge action (c1 =−0.331) and the O(a)-improved
Wilson fermion action with the perturbatively improved csw for two flavors of light quarks. Simu-
lations are performed on Nsite = 163 × 4 lattices with 25 to 32 β values at each κl , and 10,000 to
40,000 trajectories have been accumulated at each simulation point. Four light quark masses are
ranging from κl = 0.145 to 0.1505, corresponding to being from 0.46 < mπ/mρ < 0.66.

In the approximation of δ , we take two values of ∆ = 0.0001 and 0.00025 to see the stability of
the results, and the discrepancy arising from different choice is taken as a systematic uncertainty. In
the following plots, the results with ∆=0.0001 are shown unless otherwise stated. As an example,
the P dependence of lnR′(P;κl,h) are shown in Fig. 2. The statistical errors are invisible in this
scale.
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We fit the data of lnR and lnR′ to polynomial functions of P. The fits are made over three fit
ranges, three different polynomial orders, two values of ∆. Since not all the fits are successful, we
only keep the fit results satisfying χ2/dof < 3 in the following analysis. Furthermore, it turns out
that five or six parameters are enough to fit the data well, thus we omit the fits with the sixth order
polynomial. Once the fit parameters are determined, it is straightforward to calculate the curvature
of the potential.
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Figure 3: The second derivative of the first term and the second term of the effective potential are shown as
a function of P. The second term contribution exceeds that of the first term in a range of P when h = 0.4,
which indicates the occurrence of the first order transition at such a value of h.

The results for the curvature are plotted in Figs. 3 for lnR (solid curves) and lnR′ (dashed
curves), where the results for h = 0.2 and 0.4 are shown as examples. The difference in the curva-
ture between lnR and lnR′ turns out to be reasonably small at all κl .

The curvature of the first term of eq. (2.5) can be calculated using the averaged value and the
susceptibility of P̂ at each β [13], which is shown in Fig. 3 with the dotted curves obtained from the
fit to a fifth order of polynomial. It is seen that, independently of κl , d2Vlight/dP2 is always positive
as expected. The figure shows that d2 lnR/dP2 and d2 lnR′/dP2 have a peak at slightly below the
P value at which d2Vlight/dP2 takes the minimum, which indicates that, in many flavor system, the
phase transition or rapid crossover occurs at P smaller than the two flavor case.

To determine hc, we iterated the calculation with h varying in steps of 0.02. It turns out that the
resulting hc depends on the details of the fitting procedures, though not by much. We adopt all those
results as long as χ2/do f < 3, and the spread is taken as the systematic uncertainty. Figure 4 shows
the light quark mass dependence of hc, where the error bars represent the systematic uncertainties.
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Figure 4: The light quark mass dependence of hc. The solid lines represent a constant fit, where the band
on the top right corner is hc obtained from the 2+N f flavor simulation with κl = 0.0 and N f = 50.

Since no clear tendency is observed in the light quark mass dependence, we fit the data to a constant
(solid lines), yielding hc = 0.23(1) in the chiral limit of the two flavor mass. Nonzero value of hc

in the chiral limit excludes the possibility of the first order transition of massless two flavor QCD.

4. Summary and discussion

We have studied the finite temperature phase transition of QCD with two light and many heavy
quarks at zero chemical potential to identify the critical line separating the continuous crossover
and the first order regions on the κl-h plane. In other words, two flavor QCD with a finite mass
is enforced to undergo a first order transition by adding extra quarks. We then try to see whether
those extra quarks are necessary to keep the first order transition down to the chiral limit of two
flavor mass.

The nature of the transition is identified by the shape of the constraint effective potential for
the generalized plaquette. It is that hc stays constant within the systematic uncertainty in the range
of two flavor mass we have studied (0.46 ≤ mπ/mρ ≤ 0.66), which suggests that the critical heavy
mass remains finite in the chiral limit of the two flavors and hence the phase transition of massless
two flavor QCD is of second order.

Our approach is applicable for any kinds of light quark action. κh can be considered to be ar-
bitrary small by assuming arbitrary large N f . Therefore, the above statement is valid independently
of the convergence of the hopping parameter expansion.

To establish our finding, it is crucial to confirm the tricritical scaling [18, 19, 20],

hc ∼ (const.)×m2/5
l + const., (4.1)

where the power 2/5 is independent of N f . In order to confirm this power, it is essential to reduce
the systematic uncertainties associated with the fitting procedure.

We can extend this approach to explore QCD at finite chemical potential as initiated in Ref. [12,
21]. We believe that such a study brings useful information in understanding rich QCD phase
structure.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
4
7

Many flavor approach to study the nature of chiral phase transition of two-flavor QCD Norikazu Yamada

5. Acknowledgments

We would like to thank members of WHOT-QCD Collaboration for discussions. We also thank
Ken-Ichi Ishikawa for providing us his simulation codes. This work is in part supported by JSPS
KAKENHI Grant-inAid for Scientific Research (B) (No. 15H03669 [NY], 23540295 [SE] ) and
(C) (No. 26400244 [SE]), and by the Large Scale Simulation Program of High Energy Accelerator
Research Organization (KEK) No. 14/15-23.

References

[1] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).

[2] C. Bonati, G. Cossu, M. D’Elia, A. Di Giacomo and C. Pica, PoS LATTICE 2008, 204 (2008)
[arXiv:0901.3231 [hep-lat]].

[3] S. Aoki, H. Fukaya and Y. Taniguchi, Phys. Rev. D 86 (2012) 114512 [arXiv:1209.2061 [hep-lat]].

[4] G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko, H. Matsufuru and J. I. Noaki, Phys. Rev. D
87, no. 11, 114514 (2013) [Phys. Rev. D 88, no. 1, 019901 (2013)] [arXiv:1304.6145 [hep-lat]].

[5] A. Pelissetto and E. Vicari, Phys. Rev. D 88, no. 10, 105018 (2013) [arXiv:1309.5446 [hep-lat]].

[6] Y. Nakayama and T. Ohtsuki, Phys. Rev. D 91, no. 2, 021901 (2015) [arXiv:1407.6195 [hep-th]].

[7] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen and F. Sanfilippo, Phys. Rev. D 90, no. 7, 074030
(2014) [arXiv:1408.5086 [hep-lat]];

[8] T. Sato and N. Yamada, Phys. Rev. D 91, no. 3, 034025 (2015) [arXiv:1412.8026 [hep-lat]].

[9] R. Kitano and N. Yamada, JHEP 1510, 136 (2015) [arXiv:1506.00370 [hep-ph]].

[10] E. Berkowitz, M. I. Buchoff and E. Rinaldi, Phys. Rev. D 92, no. 3, 034507 (2015) [arXiv:1505.07455
[hep-ph]].

[11] S. Borsanyi et al., Phys. Lett. B 752, 175 (2016) [arXiv:1508.06917 [hep-lat]].

[12] S. Ejiri and N. Yamada, Phys. Rev. Lett. 110, no. 17, 172001 (2013) [arXiv:1212.5899 [hep-lat]].

[13] S. Ejiri, R. Iwami and N. Yamada, arXiv:1511.06126 [hep-lat].

[14] S. Ejiri, Phys. Rev. D 77, 014508 (2008).

[15] S. Ejiri, Phys. Rev. D 78, 074507 (2008) [arXiv:0804.3227 [hep-lat]].

[16] H. Saito, et al. Y. Maezawa, H. Ohno, and T. Umeda (WHOT-QCD Collaboration), Phys. Rev. D 84,
054502 (2011).

[17] S. Ejiri, Y. Maezawa, N. Ukita, S. Aoki, T. Hatsuda, N. Ishii, K. Kanaya, and T. Umeda (WHOT-QCD
Collaboration), Phys. Rev. D 82, 014508 (2010).

[18] A. Ukawa, UTHEP-302, C93-06-21.1.

[19] S. Ejiri, PoS (LATTICE 2008) 002 (2008).

[20] S. Ejiri, Eur. Phys. J. A 49, 86 (2013) [arXiv:1306.0295 [hep-lat]].

[21] R. Iwami, S. Ejiri and N. Yamada, these proceedings.

7


