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1. Introduction

After the introduction of the Yang-Mills gradient flow in lattice gauge theory [1], this concept
has been successfully applied to various purposes in lattice QCD numerical simulations [2, 3].
In this proceedings, we report our recent studies on the application of the gradient flow for two
purposes.

In the first analysis, we measure the lattice spacing of the SU(3) Wilson gauge action [4]. We
introduce reference scales having physical dimension on the basis of the gradient flow [1, 5], and
perform the measurement of lattice spacing in this scale in the range 6.3 ≤ β = 6/g2 ≤ 7.5. We
use the reference scale called w0.4 in this analysis. The parametrization of the lattice spacing as a
function of β is given in Eq. (3.3). The relation between w0.4 and other reference scales, as well as
the finite volume and lattice discretization effects in our analysis are also discussed [4].

Secondly, we apply the gradient flow for the measurement of thermodynamics of SU(3) gauge
theory. In this analysis, we use the energy-momentum tensor (EMT) operator defined by the gradi-
ent flow [6] with the small flow-time expansion [7]. The thermodynamic quantities are obtained by
taking the expectation values of the EMT operator. In Ref. [8], we performed the measurement of
the thermodynamics of SU(3) gauge theory, and found that this method can successfully analyze
the thermodynamics with good statistics compared with the previously-known integral method. In
this proceedings we report the update of this analysis on finer lattices with temporal lattice size
Nt = 12–32.

2. Gradient flow

Let us first give a brief review on the gradient flow. The gradient flow for the Yang-Mills gauge
field is the continuous transformation of the field defined by the differential equation [1]

dAµ

dt
=−g2

0
∂SYM(t)

∂Aµ

= DνGνµ , (2.1)

with the Yang-Mills action SYM(t) composed of Aµ(t). Color indices are suppressed for simplicity.
The initial condition at t = 0 is taken for the field in the conventional gauge theory; Aµ(0) = Aµ .
The flow time t, which has a dimension of inverse mass squared, is a parameter which controls the
transformation. The gauge field is transformed along the steepest descent direction as t increases.
At the tree level, Eq. (2.1) is rewritten as

dAµ

dt
= ∂ν∂νAµ +(gauge dependent terms). (2.2)

Neglecting the gauge dependent terms, Eq. (2.2) is the diffusion equation in four-dimensional
space. For positive t, therefore, the gradient flow acts as the cooling of the gauge field with the
smearing radius

√
8t.

In Ref. [7], it is rigorously proved that all composite operators composed of Aµ(t) take finite
values for t > 0. This property ensures that observables at t > 0 are regularization independent.
In the present study, we use the gradient flow for two purposes; (1) the introduction of reference
scales and the measurement of lattice spacing [1], and (2) the measurement of thermodynamic

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
6
2

Thermodynamics and reference scale from gradient flow Masakiyo Kitazawa

β 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.2 7.4 7.5
Ns 64 64 64 64 64 64 64 96 96 128 128

Nconf 30 100 49 100 30 100 30 60 53 40 60

Table 1: Simulation parameters β = 6/g2
0, the lattice size Ns and the number of configurations Nconf [4].

observables [8] using the energy-momentum tensor operator defined by the gradient flow with the
small flow-time expansion [6].

In the present study we consider two observables,

E(t) =
1
4

Ga
µν(t)G

a
µν(t), (2.3)

Uµν(t,x) = Ga
µρ(t,x)G

a
νρ(t,x)−

1
4

δµνGa
ρσ (t,x)G

a
ρσ (t,x), (2.4)

at positive flow time t > 0, where Ga
µν(t) is the “field strength” composed of Aµ(t).

3. Reference scale and lattice spacing

In this section, we analyze the lattice spacing of SU(3) Wilson gauge action [4]. In order to
define reference scales and measure lattice spacing with the gradient flow, we use an observation
that the expectation value of an observable at t > 0 is regularization independent [1]. From this
property, the expectation value of dimensionless observables does not depend on regularization.
On the lattice, therefore, they should be the lattice spacing, a, independent up to O(a2) effects. By
choosing t2E(t) as the dimensionless observable, the value of t at which t2〈E(t)〉 takes a specific
value X , i.e. the solution of the equation

t2〈E(t)〉
∣∣
t=tX

= X , (3.1)

is a dimensionful quantity, which can be used as a reference scale to introduce physical unit in lat-
tice gauge theory. In Ref. [1], tX=0.3 (sometimes called t0) is used as the reference scale. In Ref. [5],
a quantity wX defined by

t
d
dt

t2〈E(t)〉
∣∣∣∣
t=w2

X

= X , (3.2)

is proposed as an alternative reference scale. In Ref. [5], a reference scale wX=0.3 (sometimes
called w0) is employed to set the scale.

In the present study we consider reference scales, tX and wX with X = 0.2, 0.3 and 0.4. Larger
X is preferable to suppress the lattice discretization error, while the smearing radius

√
8t would

eventually hit the lattice boundary for too large X . We use w0.4 and w0.2 for the reference scales
and introduce a new parametrization of the lattice spacing a in terms of the bare coupling β = 6/g2

0
by a hybrid use of these reference scales. In this method, we measure the lattice spacing in the
range 6.3 < β < 7.5.

We perform numerical analyses of the SU(3) Yang–Mills theory with the Wilson plaquette
action with the periodic boundary condition with the lattice size N4

s . The values of β = 6/g2
0, Ns
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and the number of configurations Nconf are summarized in Table 1. For β = 7.0, 7.2 and 7.4, we
have performed another measurements with different spatial sizes; Ns = 64, 64 and 96, for β = 7.0,
7.2 and 7.4, respectively. From the comparison of the numerical results with different Ns, we have
checked that the finite volume effects are well suppressed with the choices of Ns shown in Table 1
[4].

We use the Wilson gauge action SYM for the flow equation in Eq. (2.1). To construct the oper-
ator E, we use the clover-type representation of Ga

µν unless otherwise stated. The numerical error
of the Runge–Kutta (RK) method to solve the differential equation Eq. (2.1) have been estimated
by comparing the numerical results with different integration step sizes. We have checked that the
numerical error of the RK method is within two orders in magnitude smaller than the statistical
errors.

Autocorrelation between different configurations is analyzed by the autocorrelation function
and the dependence of the jackknife statistical errors against the bin-size, Nbin. These analyses show
that the autocorrelation is not visible within statistics in our set of gauge configurations, which are
separated by 1,000 Monte-Carlo steps composed of heatbath and five over-relaxation updates. On
the other hand, the autocorrelation of the topological charge is known to become longer as the
lattice spacing becomes finer due to the critical slowing down [1]. It is desirable to perform new
measurements of the topological charge to investigate the effect of the critical slowing down on our
analysis, which is left for our future work.

As pointed out in Ref. [5], the discretization error of w0.3 is smaller than t0.3. We thus employ
wX as the key reference scale in this paper. We also note that the lattice artifact is expected to
be smaller for larger X . To check the discretization effects, we compare t2〈E(t)〉 and t d

dt t
2〈E(t)〉

defined from the clover-type representation with those defined from E(t) = 2(1−P(t)) using the
average plaquette P(t) [4]. This analysis shows that the difference between the two definitions
is suppressed for large t. Moreover, the difference is more suppressed in t d

dt t
2〈E(t)〉 than that

in t2〈E(t)〉, i.e. the discretization effect in the former is smaller than the latter. We thus employ
w0.4 as the key reference scale. In our simulations, we estimate w0.4/a for β = 7.4, 7.5 using the
data at small flow time (w0.2/a) for these β and the extrapolation of the ratio w0.4/w0.2 = 1.3042(9)
to the continuum limit [4].

For practical applications, it is convenient to introduce a parametrization of the ratio w0.4/a
in terms of β . We have carried out such parametrization using various types of fitting functions.
Among them, the three parameter fit motivated by the one-loop perturbation theory provides a
reasonable result (χ2/dof = 0.917) for 11 data points in 6.3≤ β ≤ 7.5 without over fitting:

w0.4

a
= exp

(
4π2

33
β −8.6853+

37.422
β
− 143.84

β 2

)
[1±0.004(stat.)±0.007(sys.)]. (3.3)

In Fig. 1, we show the numerical results of w0.4/a normalized by the fitting function Eq. (3.3).
The shaded band in Fig. 1 is the error associated with the fitting parameters in Eq. (3.3). The results
of some other fitting functions normalized by Eq. (3.3) are also plotted in Fig. 1 [4]. They agree
with each other within 0.5% in the range, 6.3≤ β ≤ 7.5.

We have checked that our parametrization agrees with the previously known ones in the range
of β at which both parametrizations are applicable within the error [4]. In Ref. [4], we have also
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Figure 1: Result of the three parameter fit of w0.4/a given in Eq. (3.3) [4]. Squares are the data obtained by
the numerical analyses normalized by Eq. (3.3). Shaded band indicates the uncertainty originating from the
errors of the fitted coefficients. Results with several other fitting functions normalized by Eq. (3.3) are also
plotted as well; see, Ref. [4].

determined the relation between w0.4 and other reference scales, such as t0 = t0.3, w0 = w0.3, the
Sommer scale r0, lambda parameter and critical temperature.

4. Thermodynamics

Next, we report on the update of the measurement of thermodynamics performed in Refs. [8,
9]. In this analysis, we use the energy-momentum tensor (EMT) defined by the small flow time
expansion [7, 6]. This expansion asserts that a composite operator Õ(t,x) at positive flow time in
the t→ 0 limit can be written by a superposition of operators of the original gauge theory at t = 0
as

Õ(t,x)−−→
t→0

∑
i

ci(t)OR
i (x), (4.1)

where OR
i (x) on the right-hand side represents renormalized operators in some regularization scheme

in the original gauge theory at t = 0 with the subscript i denoting different operators, and x rep-
resents the coordinate in four-dimensional space-time. Similarly to the Wilson coefficients in the
operator product expansion (OPE), the coefficients ci(t) in Eq. (4.1) can be calculated perturba-
tively [7].

Using Eq. (4.1), one can define the renormalized EMT [6]. For this purpose, we first consider
the operators defined in Eqs. (2.3) and (2.4), which are dimension-four gauge-invariant operators, as
the left-hand side in Eq. (4.1). Although these operators are quite similar to the trace and traceless-
part of the EMT, they are not the EMT since Gµν(t,x) is defined at nonzero flow time t > 0.
Because these operators are gauge invariant, when they are expanded as in Eq. (4.1) only gauge
invariant operators can appear in the right-hand side. Such operator with the lowest dimension is
an identity operator. In the expansion of the traceless operator Eq. (2.4), however, the constant term
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Nt 12 16 20 24 32
β 6.719 6.941 7.117 7.256 7.500

Table 2: The simulation parameter for the measurement of thermodynamics at T = 1.66Tc.
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Figure 2: Flow time dependence of the dimensionless interaction measure (e−3p)/T 4 (left panel) and the
dimensionless entropy density (e+ p)/T 4 (right panel) for different lattice spacings at T/Tc = 1.66. The
continuum extrapolated result obtained in the integral method in Ref. [10] is indicated by the arrow at vertical
axis.

cannot appear. The next gauge-invariant operators are the dimension-four EMTs. Up to this order,
therefore, the small flow time expansions of Eqs. (2.4) and (2.3) are given by

Uµν(t,x) = αU(t)
[

T R
µν(x)−

1
4

δµνT R
ρρ(x)

]
+O(t), (4.2)

E(t,x) = 〈E(t,x)〉0 +αE(t)T R
ρρ(x)+O(t), (4.3)

where 〈·〉0 is vacuum expectation value and T R
µν(x) is the correctly normalized conserved EMT

with its vacuum expectation value subtracted. Abbreviated are the contributions from the operators
of dimension 6 or higher, which are proportional to powers of t because of dimensional reasons,
and thus suppressed for small t.

Combining relations Eqs. (4.2) and (4.3), we have

T R
µν(x) = lim

t→0

{
1

αU(t)
Uµν(t,x)+

δµν

4αE(t)
[E(t,x)−〈E(t,x)〉0]

}
. (4.4)

The coefficients αU(t) and αE(t) are calculated perturbatively up to next to leading order in Ref. [6].
Using Eq. (4.4), the energy density e and pressure p are obtained by taking the expectation values
of diagonal components as

e = 〈T00〉, p =
1
3
〈T11 +T22 +T33〉. (4.5)

In the following, we present our numerical results on the thermodynamics with Nt = 12 – 32
for T = 1.66Tc of SU(3) gauge theory with Wilson gauge action. The values of β for different
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temporal lattice length Nt are determined using Eq. (3.3). These values are shown in Table 2. All
lattices have the aspect ratio Ns/Nt larger than 5.3. We use the Wilson gauge action SYM for the flow
equation in Eq. (2.1). The operators E and U on the lattice are constructed from the clover-type
representation of Ga

µν .
In Fig. 2, we show the numerical results for the dimensionless trace anomaly ∆/T 4 = (e−

3p)/T 4 and the dimensionless entropy density s/T 3 = (e+ p)/T 4 at T = 1.66Tc as functions of the
flow parameter tT 2. The figure shows that these functions have a linear behavior in the moderate
values of tT 2. The numerical results show deviation from this trend for small and large t. The
deviation at small t in the range

√
8t . 2a is attributed to the lattice discretization effects. On the

other hand, the decrease at large t in the range
√

8t & 1/(2T ) is understood as the oversmearing;
the smearing by the gradient flow exceeds the temporal lattice size in this range [8]. In both panels
in Fig. 2, we show the continuum-extrapolated values of ∆/T 4 and s/T 3 with the same temperature
obtained by the integral method [10] by the blue arrow beside the y axis. The figure shows that the
y-intercepts of the linear behavior of our results well agree with this result. To extract the physical
values of ∆/T 4 and s/T 3 in our method, we have to take the double limit (a, t)→ (0,0) from the
range satisfying

√
8tmin� 2a. This analysis will be reported in the future publication.

The measurement of thermodynamic quantities using gradient flow is also applicable to full
QCD [11]. A first numerical analysis is reported in Ref. [12].

Numerical simulation for this study was carried out on IBM System Blue Gene Solution
at KEK under its Large-Scale Simulation Program (Nos. T12-04, 13/14-20 and 14/15-08). The
work of M. A., M. K., and H. S. are supported in part by a Grant-in-Aid for Scientific Re-
searches 23540307 and 26400272, 25800148 and 23540330,respectively. E. I. is supported in
part by Strategic Programs for Innovative Research (SPIRE) Field 5. T. H. is partially supported
by RIKEN iTHES Project.
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