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We give a summary of our preliminary results on the finite temperature topological susceptibil-

ity χ from pure SU(3) theory. The simulations use a Symanzik improved action and a gluonic

definition of the topological charge with cutoff effects at thea2 level. We use the Wilson flow to

calculate a properly renormalized topological charge and its susceptibility. Our results suggest a

very strong decay of the topological susceptibility aboveTc in line with the results in literature.
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1. Introduction

The standard model of particle physics is one of the best tested physical theories. Its predic-
tions have been challenged by experimentalists for decades without findingsignificant discrepan-
cies even in very fine details. There are however very significant discrepancies in the big exper-
imental picture, as the standard model lacks e.g. a description of Dark Matterand Dark Energy
as well as gravity. But it does also have some theoretical problems e.g. in explaining the values
of its parameters. One of them is the strong CP problem: In principle the stronginteractions can
be CP violating by the introduction of a new term∝ θFF̃ which is consistent with all principles
which the standard model is built on. In particular it is no problem, that it violates CP as CP is
already maximally violated by the weak interaction. Experimentally one finds, thatθ is zero to
high precision, while theoretically it could be any angle between(−π,π]. Unless one accepts that
θ is fine tuned to exactly zero in our universe, one needs a mechanism whichdynamically setsθ to
zero. A prominent candidate of these mechanisms was proposed by Peccei and Quinn [1, 2] which
promotesθ to a dynamical field at some scalefa. At low energies this gives rise to a pseudo scalar
particle called axion subject to an effective potential with minimum atθ = 0 which effectively
restores CP symmetry at low energies. The effective potential is generated by QCD dynamics via
the coupling∝ θFF̃ which leads to an effective mass of the axion given by the finite temperature
topological susceptibilityχ(T)

χ(T) = f 2
a ma(T)

2. (1.1)

If the Peccei-Quinn mechanism is realized in nature to resolve the strong CP problem, then these
axion particles may also make up a substantial part of the current dark matter. As χ(T) is acces-
sible in Lattice QCD calculations, this opens a unique possibility to use Lattice QCD todetermine
properties of a very well motivated Dark Matter candidate.[3, 4, 5, 6]

The topological susceptibility has been calculated on the lattice for a long time even at finite
temperature.[7, 8] Very recently the interest in this topic increased again due to the new relevance
of axions in experimental Dark Matter searches. This lead e.g. to pure gauge studies in a large vol-
ume and with high statistics up to 2.5Tc [4] and the exploration of new techniques to improve the
tunneling between sectors using reweighting [5]. In the end, the relevantresult for the experimental
axion search is the result for full QCD at physical quark masses. This is, however, very expensive
and as a first step towards this final goal, we are also considering the quenched theory only. Some
of the technical problems are relevant for full QCD as well, like dealing with very small topological
susceptibilities at large temperature. Additionally, continuum extrapolated results at finite temper-
ature in the quenched theory are an important crosscheck for analyticalmodels of QCD above the
phase transition.[6]

To define the topological susceptibility, one needs to define the topological charge and its
density first. The topological chargeQ is the integral of the pseudo-scalar topological charge
densityq(x) over some manifoldM

Q=
∫

M

d4xq(x), q(x) =
1

32π2 εµνρσ tr
(

Fµν(x)Fρσ (x)
)

, (1.2)

with the field strength tensorFµν and the totally antisymmetric symbolεµνρσ . On a torusM =T
4,

the topological charge is discrete and assumes integer values if the boundary condition of the gauge
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field is periodic. The sectors with differentQ are separated by an infinite action barrier in the
continuum limit, which makes it very difficult for Monte Carlo algorithms based onperforming
"small" steps in field space to sample all sectors according to the probability distribution given
by the Euclidean action in the path integral. This is a problem for the ergodicity requirement for
the validity of the simulation and also makes it practically impossible to estimate a meaningful
statistical error from the data.

The topological susceptibility is then defined as the integral of the correlatorof q(x)

χ =
∫

M

d4x〈q(0)q(x)〉. (1.3)

On M = T
4 this integral has a natural largest distance contributing to the susceptibility given by

half the lattice extent. Using global translation symmetry onM = T
4 one gets

χ =
1
V4

〈Q2〉. (1.4)

If translation invariance is broken in any way, one cannot use Equ. 1.4 any more and one has to go
back to Equ. 1.3 to calculate the physical susceptibility.[10] Using Equ. 1.4 in asetup with broken
translation symmetry leads to another observable which differs from the "true" susceptibility by
large finite volume errors compared to the small value of the susceptibility. Of course, in the
infinite volume limit one recovers the correct result, but this can be very expensive.

Lets assume translation symmetry for the moment. Then Equ. 1.4 tells us, that in order to
measureχ, we have to sample also configurations withQ 6= 0 as otherwise the susceptibility would
be zero exactly. This is very difficult to reach for simulations onM = T

4 close to the continuum
limit as the charge becomes topologically protected from changes in the Monte Carlo evolution.

2. Topological Susceptibility with the Wilson Flow

Like most other observables also the topological susceptibilityχ has to be properly renor-
malized. It is subject to both additive and multiplicative renormalization [9] with renormalization
constantsZ andχ0, χR = Zχ + χ0. It is also known empirically, that cooling makesZ → 1 and
χ0 → 0 such that in the limit of large cooling, the renormalization becomes trivial.

The Wilson flow has the same properties as cooling with regard to the renormalization such
that χ(t) at finite flow time is already renormalized.[11] But the statement for the Wilson flow
has a more solid analytical footing. It has been shown additionally, that the continuum limit of
the susceptibility obtained at any finite flow timet is independent oft and that the susceptibility
obtained from the gluonic definition at finite flow time is equivalent to the fermionicdefinition
appearing in Ward identities.[12] This means, that it is sufficient to performa continuum limit at
flow time fixed in physical units, e.g.t = w2

0. The choice oft only impacts the size of the lattice
artefacts.

We demonstrate this by giving the flow time dependence for three different lattice spacings
in Fig. 1. The dependence is very soft for larger flow time for all considered lattice spacings
and the least dependence is visible at the finest lattice spacing. This indicates that the continuum
limit calculated at different flow times yields the same value. For our calculationswe choose
t = w2

0 ≈ (0.176 fm)2 which is well inside the plateau region.
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Figure 1: Flow time dependence of the topological susceptibilityχ(t) for M = T
4 with the susceptibility

calculated via the standardQ2

For our pure gauge simulations we use a Symanzik improved gauge action withO(a2) errors
and for measurements a gluonic topological charge densityq(x) calculated from the from clover
field strength tensor which has alsoO(a2) errors. Each update step in the simulation consists of
one heatbath and four overrelaxation steps. Our temperatures are in the range 0.1 Tc ≤ T ≤ 4.0 Tc,
at three different lattice spacings corresponding tont = 5,6,8. We keep the spatial volume fixed in
physical units toLx,y = 2/Tc for all temperatures. For the main runs the lattice size inzdirection is
twice as large as the one in the other spatial directions,Lz = 2Lx,y, to enable a subvolume analysis
(explained below in section 3).

3. Subvolume Method

A possible solution for the problems induced by the sampling of the discrete distribution of
the topological chargesQ was given in Ref. [13]. The method is based on the property of the
physics in any finite subvolumeVsub of the total volumeV4 of the lattice to behave like a finite
subvolume of the theory on an infinite volume in the limit of large lattice volumesV4. In particular,
the topological chargeQsub on Vsub is not quantized on the subvolume. Therefore there are no
problems sampling its distribution. The susceptibility on the subvolume is then defined as

χsub=
1

Vsub
Q2

sub. (3.1)

To obtain the physical result, one needs to take the limit of infiniteVsub in the end.
This strategy is physically plausible and works in cases where the susceptibility χ is large, e.g.

at zero temperature in the quenched case. But for cases of smallχ it does not work any more, as
this definition introduces relatively large finite (sub)volume errors. Theseerrors are independent on
the size ofχ itself, such that for sufficiently large temperatures or sufficiently light quark masses,
one cannot simulate a large enough volume, such that the finite volume errors can be neglected.

This problem is visualized in Fig. 2. The plot shows our quenched lattice datafor T =

2Tc, Nt = 5, and varyingNx = Ny = Nz/2. We choose a subvolume of the torus as the complete
lattice in all directions but thez direction where we restrict the length toLsub= Lz/2. This choice
already minimizes finite volume effects as it minimizes the surface-to-volume ratio for a given large
subvolume of the lattice. One can see, that using the full volume there are no 1/L finite volume
errors, but very strong effects for the subvolume method.
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Figure 2: Finite volume errors of different definitions of the topological susceptibility atT = 2Tc, Nt = 5,
Nx =Ny =Nz/2. Q2 uses the full torus volume,Q2

subuses a subvolume of the torus which is only restricted in
zdirection to the lengthLsub, while qqsubdirectly evaluates the correlator definition with a maximaldistance
in zdirection ofLsub/2.

The reason for these large finite volume errors for the subvolume susceptibility is that the step
from the physical integral definition of the susceptibility Equ. 1.3 to the more common Q2 version
Equ. 1.4 required translation invariance of the manifoldM which one integrates over. This is
obviously not valid any more for the integration over a subvolume with boundary and introduces
large finite volume errors. The size of the error is so large, because there are large cancellations in
the integral over the correlator which has a large positive core and (up tothe susceptibility equally)
large negative tail. If one ignores the necessity of translation invariance and uses Equ. 3.1, one
ends up with some parts of the correlator overrepresented in the susceptibility and therefore with
not complete cancellations and large 1/L finite volume effects.

A remedy to this problem is to introduce an infrared cutoff or a largest distance in the integral
over the correlator Equ. 1.3 but to still integrate up the correlator explicitly. In this way one retains
the major part of the cancellations in the integral up to exponentially suppressed contributions
from the cut off exponential tail of the correlator. But by not integratingover the total volume, one
should still retain some of the advantages of the subvolume method, as this integral has not the
full global information on the topological charge density and is therefore not aware of the integer
global topological charge. This new definition of the subvolume susceptibilityis also plotted in
Fig. 2. One clearly sees that the 1/L finite volume errors are absent. Less clear, however, is the
gain in precision which one expects from using only information on subvolumes compared to the
version using the total volume, but there is also a small gain visible.

4. Finite Temperature Results

For the simulations in the large range of temperatures of our main production runs we see
a consistent behaviour of the finite volume effects as given in 3. For small temperatures at high
susceptibilities the finite volume errors are not relevant. But for small susceptibilities like those at
very high temperatures one cannot use the subvolume susceptibility from Equ. 3.1. The subvolume
correlator definition from Equ. 1.3 restricted to a finite subvolume gives results compatible to the
total volume definition Equ. 1.4. But as also the errors for large temperatures are consistent, in the
remainder we will discuss only our results from the standard definition on thetotal volume.
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Figure 3: Left: Demonstration of the finite volume effects in the subvolume definition of the topological
susceptibilityQ2

sub compared to the full volume susceptibilityQ2 and the subvolume correlator definition
qqsub for ourNt = 5 ensembles.Right: Lattice spacing dependence of the topological susceptibility from the
full volumeQ2 for our three lattice spacings atNt = 5,6,8.

In order to produce physical results we also have to perform a continuum extrapolation. Fig.
3 gives our results forNt = 5,6,8. We see that the lattice spacing dependence is mild. As we have
O(a2) improvement on the action and on the observables this behaviour is reasonable.

In Fig. 4 we compare ourNt = 5 results with results given in literature. For this ensemble we
also performed a fit to the standard ansatz of the topological susceptibility decaying like a power of
the temperature. While the results presented here are preliminary, we see a significant discrepancy
to the high statistics result of [4] while we are quite consistent with the other results in literature.

5. Discussion and Outlook

In this contribution we have discussed some technical advances in the quest to get a reliable
Lattice QCD result for the susceptibility at large finite temperature like it is necessary for axion
phenomenology. All of our results are for the quenched case. We haveused a gluonic definition
for the topological charge density at finite Wilson flow time and have extendedthe covered tem-
perature range to 4Tc. We have also demonstrated that the subvolume method does not work for
small susceptibilities as it has large 1/L finite volume effects. We have found the reason for this
pathological behaviour and we have presented a cure for it.

The next steps are to generate more data for the fine lattice spacings to be able to perform a

1 2 4
10−8

10−6

10−4

T/TC

χw
4 0

Gattringer’02
Berkowitz’15

Kitano’15
Q2, Nt = 5

fit ∼ T−6.3(1)

Figure 4: Comparison of our preliminaryNt = 5 results with results in literature.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
6
4

SU(3) Topological Susceptibility at Finite Temperature Simon Mages

controlled continuum extrapolation of the quenched result.1 Also we plan to tune the subvolume
method in order to increase the gain in statistical accuracy to make it a helpful tool in the diffi-
cult task to determine the susceptibility even for the unquenched case, whichhas a much smaller
topological susceptibility. In addition it is more difficult to reach high temperatures in the GeV
region, sinceTc is smaller than in the quenched case (c.f. [14],[15],[16]), thus largerT/Tc values
are needed.
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