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1. Introduction

The standard model of particle physics is one of the best tested physocaiketh Its predic-
tions have been challenged by experimentalists for decades without fisigm§cant discrepan-
cies even in very fine details. There are however very significantefiaacies in the big exper-
imental picture, as the standard model lacks e.g. a description of Dark MatdeDark Energy
as well as gravity. But it does also have some theoretical problems e.gplairérg the values
of its parameters. One of them is the strong CP problem: In principle the strargctions can
be CP violating by the introduction of a new tefm@FF which is consistent with all principles
which the standard model is built on. In particular it is no problem, that it visl&@e as CP is
already maximally violated by the weak interaction. Experimentally one finds Gtlistzero to
high precision, while theoretically it could be any angle betwgerr, 1. Unless one accepts that
6 is fine tuned to exactly zero in our universe, one needs a mechanismayhmiamically set$ to
zero. A prominent candidate of these mechanisms was proposed by &st€guinn [1, 2] which
promotesd to a dynamical field at some scdlg At low energies this gives rise to a pseudo scalar
particle called axion subject to an effective potential with minimun® at 0 which effectively
restores CP symmetry at low energies. The effective potential is getdnateCD dynamics via
the couplingd 8FF which leads to an effective mass of the axion given by the finite temperature
topological susceptibility (T)

X(T) = f2my(T)2 (1.1)

If the Peccei-Quinn mechanism is realized in nature to resolve the strongobRm, then these
axion particles may also make up a substantial part of the current dark .midtg(T) is acces-
sible in Lattice QCD calculations, this opens a unique possibility to use Lattice Q@&t¢omine
properties of a very well motivated Dark Matter candidate.[3, 4, 5, 6]

The topological susceptibility has been calculated on the lattice for a long tinmeag¢Vimite
temperature.[7, 8] Very recently the interest in this topic increased agaitodhe new relevance
of axions in experimental Dark Matter searches. This lead e.g. to pugegaudies in a large vol-
ume and with high statistics up to3 [4] and the exploration of new technigues to improve the
tunneling between sectors using reweighting [5]. In the end, the relessuit for the experimental
axion search is the result for full QCD at physical quark masses. THigvgever, very expensive
and as a first step towards this final goal, we are also considering thetgpdetheory only. Some
of the technical problems are relevant for full QCD as well, like dealing wetty émall topological
susceptibilities at large temperature. Additionally, continuum extrapolatetises finite temper-
ature in the quenched theory are an important crosscheck for anatyiicdls of QCD above the
phase transition.[6]

To define the topological susceptibility, one needs to define the topologiaajetand its
density first. The topological chardg@ is the integral of the pseudo-scalar topological charge
densityq(x) over some manifold#

1
Q= ///z dxax). 9(X) = g5 Euvpoll (Fuv (X)Foa (X)) , (1.2)

with the field strength tensdi,, and the totally antisymmetric symbag},,o. On atorus# = T4,
the topological charge is discrete and assumes integer values if the bpuaaddition of the gauge
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field is periodic. The sectors with differe@ are separated by an infinite action barrier in the
continuum limit, which makes it very difficult for Monte Carlo algorithms basedberforming
"small" steps in field space to sample all sectors according to the probabilitipdiiin given
by the Euclidean action in the path integral. This is a problem for the ergodéztyirement for
the validity of the simulation and also makes it practically impossible to estimate a maaningf
statistical error from the data.

The topological susceptibility is then defined as the integral of the correlatgx)

x= [, dxta(0)a). a3)

On.# = T* this integral has a natural largest distance contributing to the susceptibiléy biy
half the lattice extent. Using global translation symmetry4n= T* one gets

1
X =y (@) (1.4)

If translation invariance is broken in any way, one cannot use Equ.ny.#are and one has to go
back to Equ. 1.3 to calculate the physical susceptibility.[10] Using Equ. 1.4@bugo with broken
translation symmetry leads to another observable which differs from the""susceptibility by
large finite volume errors compared to the small value of the susceptibility. @&epin the
infinite volume limit one recovers the correct result, but this can be vergresige.

Lets assume translation symmetry for the moment. Then Equ. 1.4 tells us, thaemi@rd
measurey, we have to sample also configurations wWitk~ 0 as otherwise the susceptibility would
be zero exactly. This is very difficult to reach for simulations.#h= T* close to the continuum
limit as the charge becomes topologically protected from changes in the Martedgvolution.

2. Topological Susceptibility with the Wilson Flow

Like most other observables also the topological susceptibjlityas to be properly renor-
malized. It is subject to both additive and multiplicative renormalization [9] witforalization
constantsZ and xo, xR = Zx + xo. It is also known empirically, that cooling mak&s— 1 and
Xo — 0 such that in the limit of large cooling, the renormalization becomes trivial.

The Wilson flow has the same properties as cooling with regard to the rencatralizuch
that x(t) at finite flow time is already renormalized.[11] But the statement for the Wilsam flo
has a more solid analytical footing. It has been shown additionally, thatahgnaum limit of
the susceptibility obtained at any finite flow tirhés independent of and that the susceptibility
obtained from the gluonic definition at finite flow time is equivalent to the fermialeiinition
appearing in Ward identities.[12] This means, that it is sufficient to perfoiantinuum limit at
flow time fixed in physical units, e.d.=w3. The choice ot only impacts the size of the lattice
artefacts.

We demonstrate this by giving the flow time dependence for three differgicelapacings
in Fig. 1. The dependence is very soft for larger flow time for all considldattice spacings
and the least dependence is visible at the finest lattice spacing. This isdicatéhe continuum
limit calculated at different flow times yields the same value. For our calculatieshoose
t = w3 = (0.176 fm)2 which is well inside the plateau region.
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Figure 1. Flow time dependence of the topological susceptibjity) for .# = T* with the susceptibility
calculated via the standaf

For our pure gauge simulations we use a Symanzik improved gauge actio@(aftherrors
and for measurements a gluonic topological charge degéitycalculated from the from clover
field strength tensor which has al€a?) errors. Each update step in the simulation consists of
one heatbath and four overrelaxation steps. Our temperatures aredmgfee T < T < 4.0 Tg,
at three different lattice spacings correspondingte 5, 6,8. We keep the spatial volume fixed in
physical units td_,, = 2/T. for all temperatures. For the main runs the lattice sizedirection is
twice as large as the one in the other spatial directibps; 2Ly, to enable a subvolume analysis
(explained below in section 3).

3. Subvolume M ethod

A possible solution for the problems induced by the sampling of the discretédi&in of
the topological charge® was given in Ref. [13]. The method is based on the property of the
physics in any finite subvolumé,,, of the total volumeV, of the lattice to behave like a finite
subvolume of the theory on an infinite volume in the limit of large lattice voluvhesn particular,
the topological charg€s,, 0n Vgyp is not quantized on the subvolume. Therefore there are no
problems sampling its distribution. The susceptibility on the subvolume is then define

1
Xsub=— Qb (3.1)
sub

To obtain the physical result, one needs to take the limit of infijgin the end.

This strategy is physically plausible and works in cases where the susligpglis large, e.qg.
at zero temperature in the quenched case. But for cases of gritalbes not work any more, as
this definition introduces relatively large finite (sub)volume errors. Thes#s are independent on
the size ofy itself, such that for sufficiently large temperatures or sufficiently lightkjnaasses,
one cannot simulate a large enough volume, such that the finite volume exndoe oeglected.

This problem is visualized in Fig. 2. The plot shows our quenched lattice fdafé =
2T, Nt = 5, and varying\y = Ny = N,/2. We choose a subvolume of the torus as the complete
lattice in all directions but the direction where we restrict the lengthltg,, = L;/2. This choice
already minimizes finite volume effects as it minimizes the surface-to-volume ragajigen large
subvolume of the lattice. One can see, that using the full volume there aré_nfinite volume
errors, but very strong effects for the subvolume method.



SU(3) Topological Susceptibility at Finite Temperature Simon Mages

1076
T T T
L N A Q2
6| o
L 11 = qusiub
L e ub
T | 1
> 4l % .
27 L | L L | L 5 L | L L | L \7
0 0.2 04 0.6 0.8 1/LyT;

Figure 2: Finite volume errors of different definitions of the topoicg susceptibility all = 2T, N; = 5,

Nx = Ny = N,/2. Q% uses the full torus volume&? ,, uses a subvolume of the torus which is only restricted in
zdirection to the lengthgy, while qgs,, directly evaluates the correlator definition with a maximigtance

in zdirection ofLg,p/2.

The reason for these large finite volume errors for the subvolume gisligas that the step
from the physical integral definition of the susceptibility Equ. 1.3 to the more can@iwersion
Equ. 1.4 required translation invariance of the manifedd which one integrates over. This is
obviously not valid any more for the integration over a subvolume with bayraiad introduces
large finite volume errors. The size of the error is so large, becausedhetarge cancellations in
the integral over the correlator which has a large positive core and thp susceptibility equally)
large negative tail. If one ignores the necessity of translation invariamteises Equ. 3.1, one
ends up with some parts of the correlator overrepresented in the sugitgtiial therefore with
not complete cancellations and largd_Tinite volume effects.

A remedy to this problem is to introduce an infrared cutoff or a largest distamthe integral
over the correlator Equ. 1.3 but to still integrate up the correlator explicitlihit way one retains
the major part of the cancellations in the integral up to exponentially suggresmtributions
from the cut off exponential tail of the correlator. But by not integratmgr the total volume, one
should still retain some of the advantages of the subvolume method, as thialiftagmot the
full global information on the topological charge density and is therefoteaware of the integer
global topological charge. This new definition of the subvolume susceptiisliyso plotted in
Fig. 2. One clearly sees that thél1finite volume errors are absent. Less clear, however, is the
gain in precision which one expects from using only information on subvawuompared to the
version using the total volume, but there is also a small gain visible.

4. Finite Temperature Results

For the simulations in the large range of temperatures of our main productisnwe see
a consistent behaviour of the finite volume effects as given in 3. For smalieiatures at high
susceptibilities the finite volume errors are not relevant. But for small ptibdiies like those at
very high temperatures one cannot use the subvolume susceptibility fronBEq The subvolume
correlator definition from Equ. 1.3 restricted to a finite subvolume givadteesompatible to the
total volume definition Equ. 1.4. But as also the errors for large tempesadneeconsistent, in the
remainder we will discuss only our results from the standard definition ototakevolume.
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Figure 3. Left: Demonstration of the finite volume effects in the subvolureénition of the topological
suscep'[ibilitngub compared to the full volume susceptibiliQ? and the subvolume correlator definition
gasupfor ourN; = 5 ensemblesRight: Lattice spacing dependence of the topological suscepfifiibm the
full volume Q? for our three lattice spacings bt = 5,6, 8.

In order to produce physical results we also have to perform a comtirextrapolation. Fig.
3 gives our results fok; = 5,6,8. We see that the lattice spacing dependence is mild. As we have
O(a?) improvement on the action and on the observables this behaviour is resona

In Fig. 4 we compare oux; = 5 results with results given in literature. For this ensemble we
also performed a fit to the standard ansatz of the topological susceptibdayide like a power of
the temperature. While the results presented here are preliminary, weigadieast discrepancy
to the high statistics result of [4] while we are quite consistent with the otheltsas literature.

5. Discussion and Outlook

In this contribution we have discussed some technical advances in thetqges a reliable
Lattice QCD result for the susceptibility at large finite temperature like it is sacgdor axion
phenomenology. All of our results are for the quenched case. Weusagea gluonic definition
for the topological charge density at finite Wilson flow time and have extetiiedovered tem-
perature range to®. We have also demonstrated that the subvolume method does not work for
small susceptibilities as it has largéL1finite volume effects. We have found the reason for this
pathological behaviour and we have presented a cure for it.

The next steps are to generate more data for the fine lattice spacings tte e perform a
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Figure 4: Comparison of our preliminary; = 5 results with results in literature.
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controlled continuum extrapolation of the quenched resuitso we plan to tune the subvolume
method in order to increase the gain in statistical accuracy to make it a helpfuhtthe diffi-
cult task to determine the susceptibility even for the unquenched case, dsc much smaller
topological susceptibility. In addition it is more difficult to reach high tempeestin the GeV
region, sincel; is smaller than in the quenched case (c.f. [14],[15],[16]), thus lafg@g values
are needed.
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