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High-order cumulants are quantities characterizing the probability distribution and have a lot of

physical information. Baryon number cumulants are measured experimentally and show an indi-

cation of the confinement/deconfinement phase transition. We focus on quark number cumulants

which are related with baryon number cumulants. However, it is difficult to calculate quark num-

ber cumulants in finite density lattice QCD because of the sign problem. In the present study we

realize a calculation of quark number cumulants beyondµ/T ∼ 1 with the canonical approach in

heavy quark region. Also, we study a finite density phase transition from a behavior of high-order

cumulants.
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1. Introduction

Finite density QCD has various phase structures, however a numerical simulation of them is
quite difficult because of the sign problem. There are a lot of theoretical developments to attack the
QCD phase diagram, and the canonical approach is well known as a candidate of it. In the present
study, we especially focus on quark number cumulants and calculate them with the canonical ap-
proach. Because, experiments [1] show a deviation from Hadron Resonance gas model in the vicin-
ity of the central collision energy 20GeV, and this behavior indicate the confinement/deconfinement
phase transition. Moreover, it is easy to compare the numerical results with values of Hadron Res-
onance gas model and Quark Gluon gas model. Lattice calculation is very convenient tool in QCD,
however, it is hard to understand the meaning of it without models or experiments. In this meaning,
calculations of quark number cumulants are good tests to investigate how the canonical approach
is helpful in finite density lattice QCD.

2. Calculation of quark number cumulants

In this section, we see a computational method of quark number cumulants in the present study.
Since the sign problem makes it difficult to perform a numerical calculation of them, we used the
canonical approach [2] combining with the winding number expansion method[3]. The canonical
approach tells us a relation of the canonical partition function and the grand canonical one, and the
winding number expansion method tells us a chemical potential dependence of a determinant of
the Dirac operator. Quark number cumulants

⟨
N̂k
⟩

c are defined through quark number moments⟨
N̂k
⟩
, which are given as follows.⟨

N̂k
⟩
=

∂ k

∂
( µ

T

)k ZG.C.(µ)

=
1

ZG.C.(µ) ∑
N

NkZcan.(N)e
µ
T N (2.1)

In the first line we used the fugacity expansion of the grand canonical partition functionZG.C..

ZG.C.(T,µ;V) = ∑
N

e
µ
T NZcan.(T;V,N) (2.2)

It is natural to use the canonical approach to get quark number moments, because what we want to
calculate is the canonical partition function. The canonical approach give us the inverse relation-
ship of the fugacity expansion, which is a Fourier transformation of the grand canonical partition
function.

Zcan.(T;V,N) =
1

2π

∫ π

−π
d

µ
T

ZG.C.(T, iµ;V)e−i µ
T N (2.3)

Moreover, we can see that the canonical partition function is a more manageable observable com-
pared with the grand canonical one in finite density lattice QCD. This property comes from theγ5

hermiticity of the Dirac operator for a pure imaginary chemical potential

γ5D(iµ)γ5 = D†(iµ) , f or µ ∈ R . (2.4)
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When we consider 2-flavor case, the sign problem do not appear from the Dirac operator, because
the determinant of it is real and positive. We used the winding number expansion method to cal-
culate the determinant of the Dirac operator. The winding number expansion method gives the
determinant of the Dirac operator as follows.

detD(µ) = eTr{log(1−κQ)} = exp

(
− ∑

n=1

κn

n
Tr{Qn}

)
= exp

(
∑
k

Wke
µ
T k

)
, (2.5)

where we defined

Q =
3

∑
i=1

(
Q(+)

i +Q(−)
i

)
+eµQ(+)

4 +e−µQ(−)
4

Q(+)
µ (x,y) := (1− γµ)Uµ(x)δx,y−µ̂

Q(−)
µ (x,y) := (1+ γµ)U

†
µ(x− µ̂)δx,y+µ̂ ,µ = 1· · ·4 . (2.6)

Coefficients{Wk}k does not depend on a chemical potential and subscriptk means winding number
of quark loop in the temporal direction. Therefore, once we get them it is easy to calculate the
determinant for an arbitrary chemical potential. However, we must restrict quark mass to heavy as
mπ/mρ ∼ 0.8 because the winding number expansion method makes use of the hopping parameter
expansion method.
In the present study, we also use the reweighting technique1.

Zcan.(T;V,N) =
1

2π

∫ π

−π
d

µ
T

∫
DU

detD(iµ)
detD(0)

e−i µ
T N detD(0)e−Sg (2.7)

We can regarddetD(µ = 0) e−Sg as a probability of the Monte Carlo simulation and the other
part as a observable. Now we can calculate the canonical partition function, thus quark number
cumulants. However, as we will see later we cannot avoid the sign problem especially at low
temperature.

3. Lattice setup

In this study we used the Iwasaki gauge action and the 2-flavor Wilson-Clover fermion action
to perform the Monte Carlo simulation. The lattice volume is83 × 4, and the other parameters
(β ,κ,CSW) is listed on table 1. Temperature is related to couplingβ and our parameter set covers
a wide range of temperature fromT/Tc = 0.644to T/Tc = 3.45. To perform the winding number
expansion method we used the hopping parameter expansion method and the maximum order of it
is taken to 480.

1To perform the numerical Fourier transformation we used the multiprecision calculations. This is suggested in
[3][4].
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β κ CSW T/Tc mπ/mρ

0.9 0.137 1.1 0.644 0.8978(55)
1.1 0.133 1.1 0.673 0.9038(56)
1.3 0.133 1.1 0.706 0.8770(52)
1.4 0.132 1.1 NA NA
1.5 0.131 1.1 0.813 0.8486(58)
1.6 0.130 1.1 NA NA
1.7 0.129 1.1 1.00 0.770(13)
1.8 0.126 1.1 NA NA
1.9 0.125 1.1 1.68 0.714(15)
2.1 0.122 1.1 3.45 0.836(47)

Table 1: Parameters used in this study. We changed
β from the confined phase to the deconfined phase
and madeκ small to perform the winding number
expansion.

Figure 1: Numerical results of the normalized
canonical partition function
−log(Zcan.(NB)/Zcan.(0)). Horizontal axis shows
the baryon number, three times of quark number
NB = 3N. The difference of colors corresponds to
the difference ofβ .

4. Numerical results

It is useful to consider a ratio of quark number cumulants because the expressions of it become
simple in the free gas models. We calculated variance

⟨
N̂2
⟩

c/
⟨
N̂1
⟩

c, skewness
⟨
N̂3
⟩

c/
⟨
N̂1
⟩

c and
kurtosis

⟨
N̂4
⟩

c/
⟨
N̂2
⟩

c of quark number cumulants, and compared the numerical results with the
model results. In Hadron Resonance gas model they are given by⟨

N̂2
⟩

c⟨
N̂1
⟩

c

= 3coth(3
µ
T
) = 3coth(

µB

T
) (4.1)⟨

N̂3
⟩

c⟨
N̂1
⟩

c

=

⟨
N̂4
⟩

c⟨
N̂2
⟩

c

= 9 , (4.2)

and in Quark Gluon gas model ⟨
N̂2
⟩

c⟨
N̂1
⟩

c

=

{
1+ 3

π2

( µ
T

)2
}

{
µ
T + 1

π2

( µ
T

)3
} (4.3)

⟨
N̂3
⟩

c⟨
N̂1
⟩

c

=
6

π2
µ
T{

µ
T + 1

π2

( µ
T

)3
} (4.4)

⟨
N̂4
⟩

c⟨
N̂2
⟩

c

=
6

π2{
1+ 3

π2

( µ
T

)2
} . (4.5)

At first we calculated the canonical partition function as in figure 1. However, we cannot evaluate
the canonical partition function for large quark number. When we consider the concavity of a free
energy with respect to quark number, we can show monotonic decrement ofZcan.(N+3)/Zcan.(N).

log(Zcan.(N+3)) ≥ 1
2
{log(Zcan.(N))+ log(Zcan.(N+6))}
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= log
(√

Zcan.(N)Zcan.(N+6)
)

⇔ Zcan.(N+3)
Zcan.(N)

− Zcan.(N+6)
Zcan.(N+3)

≥ 0 (4.6)

We claimed this condition as a necessary condition. Moreover, we can get consistent result with
the direct computation of the determinant [5] within error bars under this condition. Figure 1 shows
the canonical partition function in the application range of the winding number expansion method.
We constructed quark number cumulants from this result. We set the canonical partition function
when it does not satisfy the condition (4.6).

Figure 2: Variance as a function ofβ .

Figure 3: Skewness as a function ofβ .

Figure 4: Kurtosis as a function ofβ .

Figure 2 shows variance, Figure 3 shows skewness and Figure 4 shows kurtosis as a function of
β . Each points show numerical results, the blue solid line shows Hadron Resonance gas model re-
sults and the red solid line shows Quark Gluon gas model results. We fixµB/T to (1.08,2.04,3.00)
for the each figures. Because of the sign problem there are large error bars at low temperature, on
the other hand, at high temperature the sign problem is under control.
Moreover, we can see a transition from H.R. gas to Q.G. gas. For the variance. When we increase
the chemical potential, the place of the deviation from H.R. gas decrease. This behavior is con-
sistent with the previous work [6] qualitatively. Skewness shows same behavior with the variance.
Kurtosis shows unique behavior atµB/T = 2.04. The numerical results oscillate aroundβ = 1.6,
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kurtosis once takes a negative value aroundβ = 1.6 and approaches to the Q.G. gas result.
Since we can construct the observables with the fugacity expansion, it is easy to see them as a
function ofµ/T in the canonical approach. However, we have to take care about the effect of the
truncation of the fugacity expansion, which makes an artificial phase transition. We estimated the
place of the artificial transitionµcut

B /T from the ratio test. In other words, when the observable is
calculated by

Ncut

∑
n=−Ncut

One
µB
T n ,On =

{
Zcan.(3n) (for ZG.C.)

(3n)kZcan.(3n) (for
⟨
N̂k
⟩

c)
, (4.7)

we estimate theµcut
B /T from

ONcut

ONcut−1
e

µcut
B
T = 1 . (4.8)

In the following discussion numerical results are bounded by the condition(4.8). Thus, there is no
need to take the artificial phase transition into account.

Figure 5: Variance at low temperature as a function
of µB/T.

Figure 6: Variance at high temperature as a function
of µB/T.

Figure 7: Skewness forβ = 1.6 (T <Tc) as a function
of µB/T.

Figure 8: Kurtosis forβ = 1.6 (T < Tc) as a function
of µB/T.
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Figure 5,6 show variance , Figure 7 shows skewness and Figure 8 shows kurtosis as a function of
µB/T. The blue solid line express H.R. gas and the red solid line express Q.G. gas. In the present
study we can evaluate skewness and kurtosis only forβ ≥ 1.6. From the results of variance and
skewness, we can see a transition from H.R. gas to Q.G. gas at low temperature, and we do not see
such a transition at high temperature. This behavior can be expected from the QCD phase diagram.
Kurtosis shows a unique behavior at low temperature. The numerical result shows an oscillation
aroundµB/T ∼ 2, which is located between H.R. gas region and Q.G. gas region. Therefore, we
can expect that this oscillation indicate the phase transition.

5. Conclusion

In this study we calculated quark number cumulants and compered them with the two free gas
models. The present calculations are restricted in heavy quark region to use the winding number
expansion method. The canonical approach works well, and we can evaluate the cumulants beyond
µ/T ∼ 1 even at low temperature. From the behavior of the variance and skewness we saw a
Hadron Resonance gas to Quark Gluon gas transition. Kurtosis showed an oscillation between
H.R. gas and Q.G. gas region at low temperature. Of cause, we must study the volume dependence
of the cumulants to discuss an order of the phase transition. However, since the sign problem makes
the error bars so large at low temperature, there is a possibility to fail numerical simulations when
we increase the lattice volume.
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