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1. Introduction

The numerical simulation, from first principles, of lattice QCD at finite density is an amazingly
hard task to perform, due to the notorious sign problem [1]. Traditionally, the Grassmann variables
in the partition function of lattice QCD are integrated analytically a priori, and Monte Carlo simu-
lations consist of sampling the gauge field U , weighted by the pure gauge action Sg(U), and by the
Dirac determinant which results from such an integration:

Z =
∫
[DχD χ̄DU ]e−Sg(U)+χ̄ /D(µ,m)χ =

∫
[DU ]e−Sg(U) det( /D(µ,m)) (1.1)

However, such a determinant is complex-valued for any non-zero real chemical potential. This
undermines the probabilistic interpretation of the Boltzmann weight, and prevents direct numerical
simulations.

The sign problem is, however, representation-dependent, in the sense that it depends on the
basis of the Hilbert space over which one decides to trace, in order to obtain the partition function,
Z = Tr(eβ Ĥ). In the energy eigenbasis |Ψi〉, for example, the sign problem is absent by definition,
since every element of the transfer matrix is real non-negative: 〈Ψi|e−β Ĥδ t |Ψ j〉 ≥ 0, ∀i, j. A solu-
tion to the sign problem in lattice QCD thus amounts to finding an adequate basis of states with
respect to which the sign problem is at least mild and tractable (e.g. with reweighing methods).

Such a basis exists in the strong coupling limit of lattice QCD: it consists of constrained world-
lines of color-neutral states (mesonic monomers and dimers, and baryonic loops), which result from
integrating out the link variables before the Grassmann variables [2]. This representation of the par-
tition function is purely diagrammatic, and efficient worm-like algorithms exist which simulate it
efficiently [3]. The sign problem is so mild that it allows to map the full phase diagram of strong
coupling lattice QCD, in the strong coupling limit and at O(β ) [4].

The reason for this success is that the relevant group integrals in the strong coupling limit and
at O(β ) are simple enough, so that exact diagrammatic representations of the partition function
can be found. At higher orders in β , however, the task of computing the relevant group integrals
becomes cumbersome, and a different approach is desirable to tackle the problem at arbitrary β .

2. Compact lattice QED without link variables

Group integrals in lattice gauge theory are difficult to solve for arbitrary β because of the terms
in the Wilson gauge action, which couple four links around a plaquette. In the strong coupling limit
(β = 0), the plaquette terms vanish, and the partition function factorizes as a product of one-link
integrals, whose exact solution is known for many gauge groups.

In order for exact integration to be possible for any β , we introduce a set of free auxiliary
Gaussian variables on each plaquette (see Fig.1), and couple them to the link variables via Hubbard-
Stratonovich (HS) transformations [5]. The auxiliary variables can be made to couple to a single
link variable, while canceling higher-coupling terms (including all the Wilson plaquette terms). The
partition function thus reduces to a Gaussian integral over the auxiliary variables, whose integrand
factorizes as a product of solvable one-link integrals [5]. This method can be easily generalized in
the presence of any number of staggered flavours, coupled to a chemical potential or not.
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Figure 1: Auxiliary variables which decouple plaquette terms into sums of one-link terms.

Here we exemplify with the case of a U(1) gauge group and N f = 1, i.e. compact lattice QED
with one staggered fermion. The fermion does not couple to a chemical potential due to Gauss’
law. However, it serves as a good toy model with which we can test diagrammatic Monte Carlo
methods at arbitrary values of β .

When the method of auxiliary variables [5] is applied to the partition function of N f = 1
compact lattice QED, it becomes a weighted sum over lattice diagrams:

Z =
∫
[dU ]∏

p
eβRe(Up)∏

x,µ
eξµ χ̄xUxµ χx+µ̂−ξµ χ̄x+µ̂U†

xµ χx ∏
x

e2amχ̄xχx (2.1)

=
∫

Gβ [Q,R]∏
x

I0(β |Jxµ |) ∑
{n,k,C}

σF(C)∏
x
(2am)nx ∏

x,µ
ξ

2kxµ

µ

#C

∏
i=1

2Re(U (Ci)) (2.2)

where am is the bare mass of the staggered fermion in lattice units; ξ is the anisotropy parameter;
Gβ [Q,R] = [DQDR]e−

3β

2 QQ†
e−

β

2 RR†
is the product of Gaussian measures of all auxiliary variables;

I0 is a modified Bessel function of the first kind, which is the solution of the U(1) one-link integral:∫
dU eβRe(J†

xµU) = I0(β |Jxµ |), (2.3)

whose argument involves the effective staples:

Jxµ = ∑
ν 6=µ

ξµν

ξ 2 (R†
x−ν̂ ,νµ

Qx−ν̂ ,νµ +Rxµν); (2.4)

{n,k,C} represents a configuration of lattice diagrams, in which nx ∈ {0,1} is the occupation num-
ber of monomers, kxµ ∈ {0,1} is the occupation number of dimers, and C is a disjoint union of
self-avoiding fermionic loops Ci, with #C connected components. These diagrams are constrained
by Grassmann integration in that only one fermion and one anti-fermion per site are allowed (see
Fig.2); σF(C) = ±1 is a sign which depends on the geometry and topology of each connected
fermion loop Ci; U (Ci) is the product of effective links Ul around Ci, and an effective link is the
expectation value of the link variable with respect to the one-link integral:

Ul = 〈U〉Jl =
∫

dU U eβRe(J†
l U) =

I1(β |Jl|)
I0(β |Jl|)

Jl

|Jl|
(2.5)

3. Monte Carlo simulation

The partition function of lattice QED in the diagrammatic form Eq.(2.2) is amenable to di-
agrammatic Monte Carlo methods. In particular, a generalization of the worm-inspired directed-
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Figure 2: Admissible configuration of the lattice massive Schwinger model in the diagrammatic representa-
tion at finite β .

path algorithm (dpa) for the strong coupling limit of SU(N) lattice gauge theories with staggered
fermions [3] can be used to sample efficiently the fermionic worldlines: the monomer-dimer sector
is updated using a mesonic worm, i.e. a worm which carries a monomer defect on its tail, while the
dimer-loop sector is updated using a fermionic worm, i.e. a worm which carries a single fermion
defect on its tail. The setup is similar to the dpa used in [4], but generalized to the situation in which
some links (the ones touched by fermion loops) carry an extra weight depending on the magnitude
of the corresponding effective link.

Auxiliary variables, on the other hand, are updated with a Gaussian heatbath, plus a Metropolis
update which corrects the distribution of auxiliary variables for the presence of fermion loops.

In order to validate our code, we test it on small lattices for which we can compute the partition
function analytically. In order to test the mesonic worm algorithm, which leaves the fermionic
loops invariant, we simulate compact lattice QED on a 2d latttice (massive Schwinger model), at
β = 0. The partition function in this case can be computed analytically for small enough lattices
as a function of the bare fermion mass and lattice anisotropy; for example, on a 4× 4 lattice the
partition function is given by:

Z(ξ ,m) =16
(
ξ

16 +4ξ
12 +7ξ

8 +4ξ
4 +1

)
+(2am)16 +16

(
ξ

2 +1
)
(2am)14

+8
(
13ξ

4 +24ξ
2 +13

)
(2am)12 +32

(
ξ

2 +1
)(

11ξ
4 +17ξ

2 +11
)
(2am)10

+8
(
83ξ

8 +256ξ
6 +354ξ

4 +256ξ
2 +83

)
(2am)8

+64
(
11ξ

10 +37ξ
8 +63ξ

6 +63ξ
4 +37ξ

2 +11
)
(2am)6

+32
(
13ξ

12 +40ξ
10 +81ξ

8 +96ξ
6 +81ξ

4 +40ξ
2 +13

)
(2am)4

+64
(
ξ

2 +1
)(

2ξ
12 +2ξ

10 +8ξ
8 +5ξ

6 +8ξ
4 +2ξ

2 +2
)
(2am)2 (3.1)

The chiral condensate, which is the derivative of log(Z(ξ ,m)) with respect to the bare fermion
mass, 2am, matches the data obtained using the mesonic worm algorithm (see Fig.3).

For β > 0, the partition function is harder to compute exactly, since it involves the exact enu-
meration of self-avoiding loops on a periodic lattice. For 2×Nt lattices, however, the computation
is feasible. For this reason, we test the full worm algorithm (mesonic + fermionic) on a 2×2 lattice,
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Figure 3: Chiral condensate at β = 0 on a 4×4 lattice, using the mesonic worm algorithm.

whose partition function is given by (for ξ = 1):

Z(β ,m) = ((2am)4 +8(2am)2 +8)∑
n

I4
n (β )+8∑

n
I3
n (β )In+1(β )+4∑

n
I2
n (β )I

2
n+1(β ) (3.2)

where In are modified Bessel functions of the first kind. The auxiliary variables are also updated.
The chiral condensate as a function of β and 2am, almost matches the preliminary data from the
simulations (see Fig.4).

Preliminary
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Figure 4: Chiral condensate for β > 0 on a 2× 2 lattice, using both the mesonic and the fermionic worm
algorithms. The solid lines show the exact results from (3.2);

4. Sign problem in the lattice Schwinger model

For Monte Carlo simulations to be possible, we quench the total sign σ of admissible config-
urations, and reweigh observables in the usual way: 〈O〉 = 〈σO〉‖/〈σ〉‖. The total sign has two
contributions, σ = σFσB: a fermionic sign σF from the geometry and topology of the fermion
loops, and a bosonic sign σB from fluctuations of the effective Wilson operators associated with
fermion loops:

σB(C) = sign

(
#C

∏
i=1

2Re(U (Ci))

)
(4.1)
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A useful quantity, which measures the severity of the sign problem in a lattice with volume V , is
the difference ∆ f in free energy density between the true and the quenched ensembles: σ = e−V ∆ f .
This quantity has a well-defined thermodynamic limit: it is zero when the two ensembles coincide,
and grows as the sign problem becomes more severe. In the same spirit, we define similar quantities
for the fermionic and bosonic signs, respectively σF = e−V ∆ fF and σB = e−V ∆ fB .

Preliminary

Figure 5: Severity of the sign problems, bosonic (left) and fermionic (right), in sign-quenched simulations
of the massive lattice Schwinger model. Darker regions indicate a more severe sign problem.

In Fig.5 we show the density plots of ∆ fB and ∆ fF in a simulation of the massive Schwinger
model on a 8×8 lattice. The fermionic sign problem is less mild within a range of small fermion
masses, and approximately β -independent. For large masses, the lattice becomes saturated with
monomers, leaving no room for fermion loops, thus resulting in the absence of a sign problem. In
the chiral limit, however, the sign problem also disappears, despite the scarcity of monomers.

The bosonic sign problem, on the other hand, becomes more severe in the strong coupling
limit, for small fermion masses. This is due to the fact that the positive expectation value of the
distribution of effective Wilson loops is very close to zero at strong coupling, with a tail extending
to negative values. This results in a significant fraction of the fermion loops generated in that
region having a negative sign, which contributes to the suppression of 〈σB〉. At weak coupling,
on the contrary, the distributions of Wilson loops are centered near 1, which implies that negative
Wilson loops are highly suppressed, and consequently 〈σB〉 ≈ 1.

5. Conclusion

We showed that compact lattice QED with a single fermion flavour has an exact diagrammatic
representation for arbitrary β , amenable to Monte Carlo simulations using worm-like algorithms.
The method used to obtain this representation – the exact integration of the unitary link variables
by coupling them to auxiliary bosonic fields living on plaquettes – can be extended straightfor-
wardly to the non-Abelian and/or multi-flavour case, and provides a promising tool for simulating
lattice gauge theories at finite density from first principles. For example, in the case of N f = 1
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lattice QCD, the admissible configurations at β > 0 extend those at β = 0 (i.e. configurations of
monomers, dimers, and baryon loops) by simply adding a new ingredient: quark hoppings, whose
weights depend on the effective Wilson loops along their worldlines (see Fig. 6), and which phys-
ically represent the microscopic/partonic structure of mesons and baryons, inaccessible at strong
couplings.

Figure 6: Admissible configuration of N f = 1 lattice QCD (in 2d) at finite β : thick lines represent fermionic
worldlines (blue for condensates and meson hoppings, orange for baryon hoppings, and green for quark
hoppings), while the thin lines represent auxiliary bosonic variables. Functional Grassmann integration con-
strains the number of quarks to exactly 3 per site (and the same for antiquarks).

We use N f = 1 compact lattice QED as a toy model for this method. Despite of it lacking a
chemical potential, due to Gauss’ law, it can be used to benchmark the battery of numerical algo-
rithms necessary to simulate similar systems (namely worm algorithms for the fermion worldlines,
mesonic or fermionic, and a Gaussian heatbath for the auxiliary variables with Wilson loop correc-
tions), and to study the effect of reweighing with respect to the sign-quenched partition function.

Preliminary simulations of the massive lattice Schwinger model show a severe sign problem
in the strong coupling limit, due to the distributions of Wilson loops having a positive expectation
value very close to zero, with a significant tail onto negative values. This obstacle limits the com-
parison with the diagrammatic methods used at strong coupling [4], which do not suffer from the
bosonic sign problem observed here. The reason is that the (positive) coefficients of the bosonic
weights can be computed analytically in a strong coupling expansion, but not for general β .
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