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The cold and dense regime of the QCD phase diagram is to this day inaccessible to first principle
lattice calculations owing to the sign problem. Here we present progress of an ongoing effort to
probe this particularly difficult regime utilising a dimensionally reduced effective lattice theory
with a significantly reduced sign problem. The effective theory is derived by combined character
and hopping expansion and is valid for heavy quarks near the continuum. We show an extension
of the effective theory to order u5κ8 in the cold regime. A linked cluster expansion is applied to
the effective theory resulting in a consistent mechanism for handling the effective theory fully ana-
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1. Introduction

The details of the QCD phase diagram are still largely unknown because of the sign problem of
Monte Carlo simulations of lattice QCD. Approximate methods are able to circumvent this problem
only for small quark chemical potentials µ = µB/3<∼T [1]. So far, no sign of a critical point or a
first order phase transition has been found in this controlled region. Complex Langevin algorithms
do not suffer from the sign problem, but in some models converge to incorrect answers or in QCD
are restricted to certain regions in parameter space. A lot of progress has been made recently, but
no true phase transition has been reported in this approach either [2].

These difficulties have motivated the development of effective lattice theories, which can either
be handled analytically or whose sign problem is mild enough to simulate the cold and dense region
of QCD. Here we update an ongoing project to describe the cold and dense regime of QCD by
means of a 3d effective theory, which is derived by combined strong coupling and hopping expan-
sions. The resulting effective theory is valid for the description of very heavy quarks for sufficiently
weak couplings, such that a continuum limit of thermodynamic functions can be attempted. Its sign
problem is mild enough for complex Langevin or even Monte Carlo simulations to describe cold
nuclear matter. The heavy dense region is also studied by complex Langevin simulations in 4d
[3], for which the effective theory results can serve as a benchmark. Furthermore, the effective
theory approach can be tested against full simulations in two-colour QCD [4, 5]. In a new devel-
opment, we show how the thermodynamic functions of the effective theory can also be computed
fully analytically by means of linked cluster expansion.

2. Derivation of the effective theory

We start on a (3+1)-dimensional lattice with Wilson’s gauge and fermion actions on infinite
spatial volume and at finite temperature T = (aNτ)

−1. After Grassmann integration the partition
function is

Z =
∫
[dUµ ]det [Q]N f exp [Sg] , Sg =

β

2Nc
∑
p

[
tr Up + tr U†

p
]
, (2.1)

with the quark hopping matrix

Qab
αβ ,xy = δ

ab
δαβ δxy−κ

3

∑
ν=0

[
eaµδν0(1+ γν)αβUab

ν (x)δx,y−ν̂ + e−aµδν0(1− γν)αβUab
−ν(x)δx,y+ν̂

]
.

The lattice gauge coupling and hopping parameter are defined as

β =
2NC

g2 , κ =
1

2am+8
. (2.2)

A 3d effective action is then defined by integrating out the spatial link variables

Z =
∫
[dU0]e−Seff[U0] =

∫
[dW ]e−Seff[W ], eSeff ≡

∫
[dUk]det [Q]N f exp [Sg] . (2.3)
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The resulting effective theory depends on temporal link variables closing through the temporal
boundary, i.e. on Polyakov loops

Wi ≡
Nτ

∏
τ=1

U0 (~xi;τ) , Li = trWi . (2.4)

Without truncations, the effective action is unique and exact. Since all spatial links are integrated
over, the resulting effective action has long-range interactions of Polyakov loops at all distances and
to all powers so that in practice truncations are necessary. For non-perturbative ways to determine
truncated theories, see [6, 7, 8, 9]. Here we expand eq. (2.3) in a combined strong coupling and
hopping expansion, with interaction terms ordered according to their leading powers in β ,κ .

For the gauge action it is advantageous to perform a character expansion

exp
[

β

2Nc

(
tr U + tr U†

)]
= c0(β )

[
1+ ∑

r 6=0
drar(β )χr(U)

]
, (2.5)

where the factor c0(β ) can be neglected as it is independent of gauge links and cancels in expec-
tation values. In earlier publications [10, 11], we have shown how to compute the effective gauge
theory up to rather high orders in the fundamental character expansion coefficient u(β ) ≡ a f (β ).
Note that u(β ) = β/18+O(β 2)< 1, thus improving the convergence compared to straightforward
expansion in β . To leading order the effective gauge action reads

eS(1)eff = λ (u,Nτ) ∑
<i j>

(
LiL∗j +L∗i L j

)
, λ (u,Nτ) = uNτ

[
1+ . . .

]
, (2.6)

where higher order corrections of λ (u,Nτ) as well as a discussion of higher order interaction terms
can be found in [10]. Going via an effective action results in a resummation with better convergence
properties than a direct series expansion of the thermodynamic observables as in [12, 13]. We
observe that λ (u,Nτ) is suppressed for large Nτ . In this presentation our main interest is in the cold
and dense region, for which all λi < 10−18 and the pure gauge contribution can be safely neglected.

To compute the quark determinant in a spatial hopping expansion, we split the quark matrix in
positive and negative temporal and spatial parts,

Q = 1−T −S = 1−T+−T−−S+−S− , (2.7)

The static determinant is given by neglecting the spatial parts and can be computed exactly [14]

det[Qstat] = ∏
~x

det
[
1+h1W (~x)

]2
det
[
1+ h̄1W †(~x)

]2

= ∏
~x

[
1+h1L~x +h2

1L†
~x +h3

1

]2 [
1+ h̄1L†

~x + h̄2
1L~x + h̄3

1

]2
, (2.8)

with the leading order couplings

h1 = (2κeaµ)Nτ , h̄1 = (2κe−aµ)Nτ . (2.9)

In order to compute a systematic hopping expansion, we define the kinetic quark determinant

det[Q] ≡ det[Qstat]det[Qkin] , (2.10)

det[Qkin] = [1− (1−T )−1(S++S−)]≡ det[1−P−M] = exp [tr ln(1−P−M)] . (2.11)
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The static propagator (1− T )−1 is also known exactly. It contains summation of all temporal
windings to produce the basic building blocks of the effective action, for details see [17],

Wn,m(~x) = tr

(
h1W (~x)

)m(
1+h1W (~x)

)n . (2.12)

We have calculated the effective action through order κ8u5 in the low temperature limit, i.e. the
leading power of Nτ . However, because of its length we will give the result only in a compact,
graphical representation. We symbolise factors of Wn,m(~x) by vertices, where n is the number of
bonds entering a vertex, and m is the number indicated on the node. Furthermore, vertices which
are connected by one or more bonds are nearest neighbours on the lattice.

Seff = h2N f ∑
dof

1

1
−h2

2N f ∑
dof 1

1

1
−h2

2N2
f ∑

dof

1

1
+h3

2N f ∑
dof 1

1

1

1

+
1
3

h3
2N f ∑

dof

(
1

1

1

1
− 2

1

1

1

)
+2h3

2N2
f ∑

dof

(
1

1

1
−

1

2

1

)

+
1
6

h3
2N f ∑

dof

(
1

1
−

2

2

)
− 4

3
h3

2N3
f ∑

dof

1

2
−h4

2N f ∑
dof 1

1

1

1

1

− 1
12

h4
2N f ∑

dof

(
1

11

1 1
−2 2

11

1 1
+ 3

11

1 1

)
−h4

2N f ∑
dof

(
1

1

1

1

1
−

1

1

2

1

1

)

−h4
2N2

f ∑
dof

(
1

1

1

1

−4
2

1

1

1

+
3

1

1

1

)
−h4

2N2
f ∑

dof 1 1

11

−2h4
2N2

f ∑
dof

(
1

1

1

1
−

1

2

1

1
)
−h4

2N2
f ∑

dof

(
1

1

1

1
−2

1

1

2

1
+

1

2

2

1
)

− 1
3

h4
2N f ∑

dof

(
1

1

1
−2

1

2

1
+2

2

2

1
−

2

3

1

)

+
4
3

h4
2N3

f ∑
dof

(
2

1

1
−2

2

2

1
+2

1

2

1
−

1

3

1

)

−
(

1
12

N f +
2
3

N3
f

)
h4

2 ∑
dof

(
1

1

1
−4

1

2

1
+

1

3

1

)
− 2

3
h4

2N4
f ∑

dof

(
1

3
+2

2

2

)

− 1
12

h4
2N2

f ∑
dof

(
1

1
+12

2

2
+

3

3

)
+

2
3

h4
2N2

f ∑
dof

(
1

2
+

2

3

)
+O

(
κ

10) (2.13)

The effective couplings to this order are

h1 = eNτ (aµ+log(2κ))e6Nτ κ2u( 1
1−u+4u4−12κ2+9κ2u+4κ2u2−4κ4), (2.14)

h2 =
κ2Nτ

Nc

[
1+

2u
1−u

+8u5
]
. (2.15)

The sign problem of this effective theory is weak and it can be simulated either by complex
Langevin without any convergence or runaway problems, or even by standard Metropolis using
reweighting. For details and tests of the simulation algorithm see [17].
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Figure 1: Left: The deconfinement critical surface with heavy quarks for real and imaginary chemical
potential. From [15]. Right: The qualitative phase diagram for QCD with heavy quarks. The location of the
lines and critical endpoints depends on N f and the quark mass.
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Figure 2: Left: Baryon density, Polyakov loop and conjugate Polyakov loop obtained from Monte Carlo
Ns = 3, complex Langevin (Ns = 6) and the static strong coupling limit, respectively. From [16]. Middle:
Continuum extrapolation for two densities. Right: Baryon density in the continuum. From [17].

3. The QCD phase diagram for heavy quarks

The effective theory has been used to study the QCD phase diagram for QCD with heavy
quarks. In the static limit, the finite temperature deconfinement transition is of first order, corre-
sponding to the spontaneous breaking of centre symmetry. With dynamical quarks, the fermion de-
terminant breaks the symmetry explicitly and the transition weakens until it changes to a crossover
at a critical quark mass. Similarly, real chemical potential weakens the transition. This behaviour
is reflected in the heavy mass corner of the Columbia plot. Fig. 1 (left) shows the deconfinement
critical surface separating the first order from the crossover region as calculated with a κ2-action
but full Nτ - dependence in [15].

The cold and dense regime was considered in [16, 17]. Fig. 2 (left) shows results at a fixed
lattice spacing. We set the scale using the r0 parameter and compute the corresponding pion mass
from strong coupling formulae [17]. To keep our truncated series in full control, we choose β =

5.7,κ = 0.0000887,Nτ = 116 corresponding to mπ = 20 GeV, T = 10 MeV, a = 0.17 fm. The
silver blaze property as well as lattice saturation are clearly observed. Note that the Polyakov
loop as well as its conjugate get screened in the presence of a baryonic medium, and hence rise.
The ensuing decrease is due to the artefact of lattice saturation which forces all Z(3) states to be
occupied. Note that this decrease happens before saturation near the point of half filling. There
is an approximate particle anti-particle symmetry about this point and one expects artefacts to be

5
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Figure 3: Left: Convergence of the baryon density as a function of h2 = κ2Nt
Nc

, computed with effective
actions of different orders in the hopping expansion. Right: Convergence in u.

dominant [18]. Fig. 2 (right) shows the continuum extrapolated results for the baryon density as a
function of chemical potential, each point being extrapolated from results for 4-7 lattice spacings
[17]. We observe the silver blaze property followed by the onset of nuclear matter, which is steeper
for N f = 2 than for N f = 1 as expected. Note that the onset transition happens at µc<∼mB, due
to the binding energy between the nucleons. Note also that the onset transition here is a smooth
crossover, in contrast to the first-order phase transition for physical QCD in nature. This is due
to the fact that the binding energy decreases with growing quark mass and for the heavy quarks
studied here is smaller than the temperature realized in the plot. It was confirmed in [17] that the
first-order behaviour indeed results for sufficiently large hopping parameters/small quark masses,
but in that mass range the effective theory is not yet converging and terms of higher order in κ are
necessary to quantitatively reproduce QCD.

4. Systematics of the effective theory to order κ8

An important question is for which parameter regions the effective theory is valid. Since
both the character as well as the hopping expansion provide convergent series within their radius
of convergence, we are able to self-consistently check this by comparing physical observables at
different orders of the effective action. Here we are interested in the cold and dense region around
the onset of nuclear matter and our observable of choice is the baryon number. Fig. 3 (left) tests
the hopping expansion in the strong coupling limit by comparing results obtained with effective
actions of increasing order in κ . One observes clearly how adjacent orders stay together for larger
values of the coupling h2 as the order is increased, thus extending the range where our effective
action is reliable. Fig. 3 (right) shows the same exercise for the largest h2 ∼ 0.1 considered here,
this time increasing the orders of the character expansion. We observe good convergence up to
β ∼ 7, which is a sufficiently weak coupling to allow for continuum extrapolations. It is interesting
to note that the convergence properties are not determined by the size of the expansion parameters
alone. Even though the u(β )-values far exceed the κ-values employed in the figures, convergence
in u(β ) appears to be faster.

6
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Figure 4: Baryon number density as a function of pion mass.

The gain in convergence region can be exploited in two ways. Firstly, at fixed temperature
and quark masses it allows for the use of finer lattices, which can be employed in a continuum
extrapolation. Fig. 2 (middle) shows results from our previous simulations obtained with the κ4-
action as well as new ones with the κ8-action at two values of µ > µc. The baryon density just about
reaches the domain with leading cut-off effects linear in a, as is expected for Wilson fermions. The
break-off from this behaviour for finer lattices is due to truncation errors and indicates the limit
of validity of the effective action. The new data generated with the κ8-action indeed smoothly
extends the linear section towards the continuum limit. We conclude that our hopping expansion
is systematic and controlled, with additional orders in the action allowing for simulations on finer
lattices. For sufficiently heavy masses a continuum extrapolation appears possible.

A second way to benefit from the additional orders in the hopping expansion is to keep the
lattice spacing fixed and study smaller masses. This is shown in Fig. 4 for two different lattice
spacings. The error bars in these plots are systematic and give the difference between results
obtained by the action to the highest two orders in the hopping expansion. Growing error bars
thus indicate the loss of good convergence. As expected, increasing orders allow for smaller quark
masses, and so do coarser lattices. However, the gain in mass range per additional order in the
hopping expansion is too small to envisage an extension to the physical quark masses of QCD at
the present stage.

5. Analytic evaluation of the effective theory

So far we have used Monte-Carlo and Complex Langevin simulations to simulate the effec-
tive theory on a 3d lattice and numerically calculate the remaining integral over Polyakov loops.
However, restricted to some finite order in the expansion parameters κ and u(β ), these integrals can
also be carried out analytically. In particular, since the effective couplings are small and correspond
to power series in the original couplings, a perturbative evaluation should have good convergence
behaviour, as noted before [9, 17]. In order to get the correct thermodynamic limit we now employ
a linked cluster expansion, and thus calculate the free energy directly rather than going through the
partition function. A review of the standard linked cluster expansion can be found in [19]. One
should note however that the standard linked cluster expansion tailored to spin models deals with
nearest neighbour interactions. Our action on the other hand contains n-point interactions at all dis-

7
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tances and with all possible geometries. It can then be mapped into a spin model, whose partition
function thus takes the more generalised form

Z =
∫

∏
x,i

dφi(x) exp
{
−S0[φi]−

1
2! ∑

x,y
vi j(x,y)φi(x)φ j(x)

− 1
3! ∑

x,y,z
ui jk(x,y,z)φi(x)φ j(y)φk(z)+ . . .

}
. (5.1)

In our case the effective theory is fully encoded in the coupling constants vi j(x,y),ui jk(x,y,z), . . . ,
which themselves are series in the expansion parameters. The free energy can hence be rewritten
as:

W [v,u, . . . ] =

[
exp
(

1
2! ∑

x,y
∑
i, j

vi j(x,y)
δ

δ ṽi j(x,y)

)
exp
(

1
3! ∑

x,y,z
∑
i, j,k

ui, j,k(x,y,z)
δ

δ ũi, j,k(x,y,z)

)

· · ·
]
W [ṽ, ũ, . . . ]

∣∣∣∣∣ṽ=0
ũ=0
...

, (5.2)

and with the expressions for the couplings at hand, the 3d theory can be evaluated analytically in
a systematic, well defined way by carrying out the higher order derivatives and summing over the
set of topologically invariant terms. Although this approach is valid, it lacks the elegance of the
graphical techniques of the linked cluster expansion. However, because the all of the terms given in
Eq. (2.13) can be embedded on a square lattice, one can use another embedding scheme to simplify
the calculations. This scheme will be introduced next.

6. Graphical methods

The linked cluster expansion graphs constitute all contributions to the free energy in the
thermodynamic limit up to a certain order. Therefore by embedding the terms from the effec-
tive action onto all connected skeleton graphs from the linked cluster expansion with two-point
interactions, we can calculate the free energy of the effective theory. This procedure is most easily
demonstrated with an example:

Consider for now an effective theory consisting of two terms, a nearest neighbour term, and a
"wedge"

S = a∑
dof

+b ∑
dof

. (6.1)

To calculate the free energy, we can embed these terms onto the linked cluster graphs, calcu-
lating symmetry factors and lattice embeddings for every embedding on every graph. For example
embedding onto the fourth order graph

g8 = , symmetry: 4 (6.2)

8
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Figure 5: Linked cluster expansion of the κ2 (left) and κ8 (right) actions for β = 0 and h1 = 0.8.

we get the following contribution to W :

Wg8 =
a4Λ

4
+a2bΛ +

a2bΛ

2
+

b2Λ

2
. (6.3)

The denominators give the overall symmetry factor of the embedding and Λ is the lattice embedding
of the graph itself. For d dimensional square lattices it is Λ = (2d)3. After the embeddings we are
left with overlapping nodes at individual lattice points which gives integrals on the form∫

dW det
[
Qstat

]2N f W k1
n1,m1
· · ·W kN

nN ,mN
, (6.4)

which are analytically calculable for ∑i niki≤ 2N f using for example Polyakov loop integral lookup
tables. This means that for a system with 2 degenerate quark flavours we can carry out the calcu-
lation up to order κ8. The full result for the free energy is too lengthy to be included here, and will
be published elsewhere in the near future.

7. Comparison with numerics

With an analytic expression for the free energy at hand, various bulk thermodynamic quantities
can be calculated and the results compared to those obtained with numerics. It should be stressed
that the analytical results emerged from a two stage, first the effective action is calculated to a fixed
order. Second, the expanded action is used to compute e.g. the free energy to a specific order. This
implies that we have for example a O

(
κ8
)

linked cluster expansion for the O
(
κ2
)

action, which we
expect to reproduce the O

(
κ2
)

numerical results. A comparison between the various orders of the
linked cluster expansion is presented in Fig. 5. Expanding the κ2 action is shown to the left, while
the κ8 action is used in the right plot. From the figure one can see that the κ2 action converges
much quicker than the κ8 action. This is only natural as the cluster expansion to order κ4 only
contains effective action terms to the same order, and the expansion thus have to "catch up" with
the order at hand.

A linked cluster expansion is done for a fixed lattice spacing. By applying the same procedure
to different lattices it is also possible to carry out continuum extrapolations. In Fig. 6 (left) it

9
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Figure 6: Continuum extrapolated results from the analytic calculation. Left: Baryon density as a function
of baryon chemical potential, compare to Fig. 2. Right: The equation of state in the cold and dense regime
with a fitted curve.

is demonstrated that this gives remarkably similar results to the numerical ones. In both cases
error bars include a systematic error, measured as the difference between the two highest order
effective actions. Fig. 6 (right) shows a continuum extrapolated equation of state for the dense
nuclear matter. It is interesting to note that when the curve is fitted to a power law, the exponent
suggests that heavy dense matter behaves as a non-relativistic free gas of fermions. The origin of
this behaviour will be the subject of further study and we believe that analytical equations will be
helpful in this endeavour as one can turn on and off the interconnected degrees of freedom to obtain
insight into the underlying processes at work.

8. Chain resummation

So far we have managed to reproduce most of the simulated results with analytical calculations.
In this section we will present a resummation scheme for the analytic approach which even extends
its reach beyond that of the numerical methods. First let us demonstrate the pattern with a small
example before moving on to the full resummation. Consider for now the following four terms
from Eq. (2.13),

h2N f ∑
dof

1

1
, −h2

2N f ∑
dof 1

1

1
, h3

2N f ∑
dof 1

1

1

1
, −h4

2N f ∑
dof 1

1

1

1

1
. (8.1)

It is easy to see a common pattern appearing from these terms. Each term extends the length of the
chain by one node while maintaining a common prefactor. Looking at the equations we see that
every link in the chain adds a factor h2W2,1 to the term, along with the necessary spatial geometry.
One can check with the terms up to order κ8 in Eq. (2.13) that this holds not only for the simple
chain shown above, but for all terms in the action with a singly connected node, meaning nodes
that correspond to a factor of W1,1. The "chain" resummation scheme thus corresponds to the
substitution

W1,1(x)→W1,1(x)
∞

∑
n=0

G ({xn})
n

∏
i=1

(−h2)W2,1(xi), (8.2)
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Figure 7: Value of the integrated nodes where the red curve comes from three separate nodes, the green
curve from the case where two of the three nodes overlap and finally the blue curve from the case where all
three nodes overlap.

where G ({xn}) contains the geometry of the chain. We will not go into more detail about the
correctness of the chain resummation here as it is quite involved. A more satisfactory argument
based on the specifics of the effective 3d theory will be given in a separate publication.

While we now have a resummation to all orders in κ for every order in the effective theory,
evaluating the final gauge integral is still impossible. This is because we need to sum over all
geometries for all the terms in the resummation, which is inaccessible. To proceed, an additional
constraint must be introduced, namely that only embeddings with the same basic geometry as the
chain itself is included. This implies that all nodes of the chain will be at separate lattice points,
and an n+1 long chain will result in the following integral:(

(2d)h2

∫
dW det

[
Qstat

]2N f W2,1

)n

(2d)h2

∫
dW det

[
Qstat

]2N f W1,1

≡ (2dh2)
n+1I11In

21. (8.3)

and thus the full chain will give

(2d)h2I11

∞

∑
n=0

(−(2d)h2)
nIn

2,1 =
(2d)h2I11

1+(2d)h2I21
. (8.4)

Carrying out this resummation also introduces a small error. This arises because the embedding
factor of (2d) is too large, and the linked cluster expansion relies on cancellations from other same
order graphs to correct this. These would be graphs that overlap with itself as it spans the lattice.
One could replace the embedding factor with a more natural one from e.g. studies of the self-
avoiding walk. For a 3d square lattice the factor would be somewhere between 4 and 5. However,
in Fig. 7 one can clearly see that the contributions from self-overlapping terms are subleading,
especially as we increase the baryon chemical potential.

9. Resummed results

With the improved analytical results at hand we redo the convergence plot. In Fig. 8 (left) the
effects of the resummation are clearly visible, more than doubling the convergence region in h2.
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Figure 8: Convergence of the analytically improved 3d theory results. Left: Using the resummation scheme
introduced in Section 8. Right: Using the near diagonal Padé approximants.

On the right of the same figure we have also provided the result of carrying out a Padé approxi-
mation in h2, choosing the close to diagonal ones. It is not surprising that the Padé approximation
gives similar improvements, although slightly superior. Both correspond to resummations giving
rational expressions. The Padé is not restricted to a particular class of diagrams and might therefore
predict more of the higher order behaviour. Nonetheless, the similarity between the two results is
reassuring as to the validity of the chain resummation, which originates from the effective theory
itself.

Finally, we use this improved convergence behaviour to study another physics observable. In
Fig. 9 we plot the binding energy per nucleon, defined by the energy density minus the mass density
in the zero temperature limit,

ε ≡ e−nBmB

nBmB
. (9.1)

This is an important quantity that characterises nuclear matter. In previous work we have shown
numerically and to leading order in the hopping expansion, that it displays the silver blaze property
until the onset transition, where it becomes negative [17]. We can now extend this study to slightly
larger densities. Fig. 8 shows the binding energy extracted from both the resummation scheme as
well as the Padé approximants to the partition function at various orders. While quantitative con-
vergence breaks down shortly after the onset transition near 3µ ∼ mB, we obtain a new qualitative
result: in higher orders we see the binding energy becoming positive again with growing chemical
potential, as is expected from nuclear physics. A minimum characterising nuclear density appears,
which however is not yet settled quantitatively at the available orders.

10. Conclusion

In a continuation of a long term project, we have derived a 3d effective lattice action for
the description of thermodynamics of QCD with heavy quarks through the orders u5κ8 in a com-
bined character and hopping parameter expansion. The effective action can be simulated by either
complex Langevin or, due to the mildness of its sign problem, Metropolis with reweighting. By
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Figure 9: Plots of the binding energy as a function of baryon chemical potential, β = 0, κ = 0.08, Nt = 50.
Left: Using the resummation scheme. Right: Using the Padé approximants.

comparing results for observables obtained with effective actions of neighbouring orders, full
control over the convergence properties of the expansion is obtained. The additional orders in
the effective action allow for finer lattices and somewhat lighter quark masses, though an exten-
sion to the physically interesting mass region is not in reach at present. By generalising linked
cluster expansion methods from spin models to our effective lattice theory with long distance and
many-point couplings, a fully analytic calculation of thermodynamic functions was achieved that
quantitatively agrees with the simulations of the effective theory. Finally, we have devised a re-
summation scheme that sums up infinite chains of graphs analytically, which in addition includes
higher order terms in the effective theory.
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