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1. Introduction

QCD is known to exhibit a confined phase at low temperatures and a deconfined phase at
high temperatures. In the confined phase, quarks and gluons are bound inside of hadrons and the
iso-vector chiral symmetry in the light quark sector is broken spontaneously. This spontaneously
broken chiral symmetry is restored in the deconfined phase.

In SU(Nc) pure gauge theory without dynamical quarks, the deconfinement transition is a
phase transition, with the Polyakov loop being the order parameter. This phase transition is as-
sociated with the Z(Nc) center symmetry. The logarithm of the Polyakov loop corresponds to the
negative free energy of a static quark in temperature units [1]. The Polyakov loop is not invari-
ant under Z(Nc) transformation and therefore strictly vanishes for temperatures below the phase
transition temperature, i.e. the free energy of a static quark is infinite. On the other hand, it as-
sumes a finite expectation value above the transition temperature due to color screening. Thus, the
deconfinement transition is closely related to the onset of color screening [1].

The center symmetry is broken explicitly by the presence of sea quarks in full QCD. As two
color charges are separated beyond the string breaking distance, the flux tube breaks apart and a
light quark-antiquark pair is created from the sea. Hence, the Polyakov loop takes a small, but
positive expectation value in the confined phase of QCD, which is related to the binding energy of
static-light mesons. Therefore, it is not clear to what extent the Polyakov loop is suitable for the
discussion of the deconfinement transition in QCD, and therefore, deconfinement in QCD is often
discussed in terms of fluctuations of conserved charges (see [2] and references therein).

In this contribution, we discuss color screening in QCD with Nc = 3 in terms of the Polyakov
loop correlator or equivalently the free energy FQQ̄(r,T ) = Favg(r,T ) of a static QQ̄ pair. We also
consider a color-singlet Wilson line correlator and the cyclic Wilson loop, which are both related
to the color-singlet and color-octet free energies FS(r,T ) and FO(r,T ) for a QQ̄ pair in full QCD.
These quantities have already been studied in Ref. [3], though the discussion was restricted to
Nτ = 6 lattices. Here, we include finer lattices and extrapolate to the continuum limit.

2. Lattice setup

We study the Polyakov loop and the related correlators in full QCD for a large range of tem-
peratures and five different temporal extents Nτ = {12,10,8,6,4} of the lattice. The temperature
T (β ,Nτ) = 1/(a(β )Nτ) is related to the gauge coupling β = 10/g2 through the lattice spacing
a(β ). Taking the continuum limit at fixed temperature requires simultaneous variation of both β

and Nτ , which is why numerical studies of QCD at finite temperature are quite demanding. In order
to avoid finite volume effects, we use lattices with aspect ratio Nσ/Nτ = 4, where Nσ is the extent
of each spatial direction. We have a physical strange quark mass and nearly physical light quark
masses, ml = ms/20, corresponding to a pion mass of mπ = 161MeV in the continuum limit. The
gauge configurations were generated with tree-level improved Symanzik gauge action and highly
improved staggered quarks (HISQ) by the HotQCD collaboration [4, 5]. We use the publicly avail-
able MILC code [6] in combination with libraries provided by the USCQD consortium [7].

2.1 Observables

The Polyakov loop L(β ,Nτ ,x) is defined in lattice QCD as a normalized trace of a temporal
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Wilson line W (β ,Nτ ,x) wrapping around the time direction once,

L(β ,Nτ ,x) =
1
3

TrW (β ,Nτ ,x), W (β ,Nτ ,x) =
Nτ

∏
x0=1

U0(x0,x). (2.1)

We obtain the expectation values of Polyakov loop, Polyakov loop correlator, Wilson line
correlator and cyclic Wilson loop by taking ensemble averages (average over x included) as

Lbare(β ,Nτ) = 〈L(β ,Nτ ,x)〉, (2.2)

Cbare
P (β ,Nτ ,r) = 〈L(β ,Nτ ,x)L†(β ,Nτ ,x+ r)〉, (2.3)

Cbare
S (β ,Nτ ,r) = 1/3〈Tr

[
W (β ,Nτ ,x)W †(β ,Nτ ,x+ r)

]
〉, (2.4)

W bare
S (β ,Nτ ,r) = 1/3〈Tr

[
W (β ,Nτ ,x)S(β ,Nτ ,x;r)W †(β ,Nτ ,x+ r)S†(β ,0,x;r)

]
〉. (2.5)

Since the Wilson line W (β ,Nτ ,x) itself is not gauge invariant, Cbare
S (β ,Nτ ,r) vanishes unless

a gauge-fixing procedure is used. We fix the gauge fields to Coulomb gauge [8, 9]. In the definition
of W bare

S (β ,Nτ ,r), we use spatial Wilson lines S(β ,x0,x;r) that are path ordered products of link
matrices along the shortest paths from point x to point x+r within time slice x0. We only consider
paths aligned with the lattice axes, since paths of different shape would introduce additional path-
dependent cusp and intersection divergences. The spatial Wilson lines ensure gauge invariance
such that gauge fixing is not required for cyclic Wilson loops.

All four bare observables diverge in the continuum limit and require multiplicative renormal-
ization with a factor exp [−NτcQ(β )] for each Wilson line W (x). Moreover, spatial Wilson lines
in the cyclic Wilson loop introduce a linear divergence. We regulate the Wilson loop by applying
link smearing procedures to the spatial links, using nhyp = {0,1,2,5} iterations of HYP smearing
restricted to spatial links only. After taking care of the divergence of the Wilson line W (x), the
renormalized observables are related to free energies for finite Nτ and in the continuum limit as

Lren(T ) = e−FQ(T )/T , Cren
P (T,r) = e−Favg(r,T )/T and Cren

S (T,r) = e−FS(r,T )/T . (2.6)

The cyclic Wilson loop and the Wilson line correlator both mix singlet and octet free energies
under renormalization. Nevertheless, the differences with the Polyakov loop correlator,

[CS−CP](T,r) = 8/9 [CS−CO](T,r), [WS−CP](T,r) = 8/9 [WS−WO](T,r), (2.7)

are multiplicatively renormalizable [10]. The octet Wilson line correlators CO and octet Wilson
loops WO are defined analogously to CS and WS in eqs. (2.4) and (2.5) with a pair of SU(3) genera-
tors T a left- and right-multiplied to one of the two temporal Wilson lines W (β ,Nτ ,x) and summa-
tion over the group index a. In the following discussion, we make use of free energies in units of
the temperature, e.g. fQ(T,Nτ) = FQ(T,Nτ)/T , which vary more slowly with the temperature than
the primary observables and are renormalized by adding NτcQ(β ) (or the respective combinations
for the other free energies). We also usually omit the indication ren for renormalized quantities.

2.2 Renormalization and scale setting with QQ̄ procedure

We obtain the renormalization constant cQ(β ) by normalizing the T = 0 static QQ̄ potential
V (r) to a prescribed value. Namely, V (r) for different lattice spacings a(β ) is fixed to be 0.954/r0
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or 0.2065/r1 at distances r = r0 [4] or r = r1 [5], respectively. The scales r0 and r1 are defined as

r2 dV (r)
dr

∣∣∣∣
r=ri

=Ci, i = 0,1, (2.8)

where C0 = 1.65 and C1 = 1.0. In physical units we have r0 = 0.4688(41) fm and r1 =

0.3106fm [11]. Either distance ri defines the lattice spacing a(β ) in physical units as a function
of the gauge coupling β . The renormalization scheme (QQ̄ procedure) is limited by availability
of T = 0 lattice data (β ≤ 7.825, lattice spacing a & 0.04fm). Thus, continuum extrapolation us-
ing the finest lattices (Nτ = 12) is limited to T . 407MeV. The renormalization constants cQ(β )

have been obtained using results on V (r) from [4, 5]. Because we need intermediate β values for
a common set of temperatures, we interpolate cQ(β ) using R statistical package [12] with error
propagation via bootstrap method. Further details are deferred to a publication in preparation [17].

3. Color screening observables from the static quark correlators

On the one hand, any static quark-antiquark free energy approaches the same constant at suf-
ficiently large distances due to color screening. This constant equals twice the free energy of an
isolated static quark because the two color charges are fully decorrelated. In other words the cor-
relators defined above will approach L2 at large distances. On the other hand, thermal effects are
no more than a perturbation to correlators at sufficiently short distances. At distances, r . 1/T
we expect to see the interplay between vacuum effects and medium effects, while at still larger
distances we should see the onset of color screening. It is convenient to subtract the known asymp-
totic constant and obtain correlators that vanish for sufficiently large distances. By subtracting the
bare Polyakov loop squared from the correlation functions the correlated noise at large distances is
greatly reduced. The renormalized correlators are obtained by adding back the asymptotic constant
in terms of the renormalized instead of the bare Polyakov loops.

3.1 Polyakov loop and free energy FQ(T )
We use bare Polyakov loop data from HotQCD given in [4, 5] and interpolate f bare

Q (β ,Nτ) for
each Nτ in β using R statistical package [12] and error propagation via bootstrap method. Further
details are deferred to a publication in preparation [17]. Interpolation is necessary to obtain the
Polyakov loop for a common set of temperatures for all Nτ . We add the errors of NτcQ(β ) in
quadrature, since they are statistically independent from the errors of the bare Polyakov loop. We
extrapolate FQ(T,Nτ) to the continuum limit with pointwise extrapolations for each temperature
and with a global fit using a polynomial Ansatz,

FQ(T,Nτ) =
N0

∑
i0=0

ai0T i0 +
1

N2
τ

N2

∑
i2=0

ai2T i2 . (3.1)

The orders N0 and N2 of two polynomials in T parametrize the temperature dependence of the con-
tinuum limit and of cutoff effects. Further details are deferred to a publication in preparation [17].
Our final continuum result, has been discussed already in [13] with regard to comparison between
QQ̄ procedure and gradient flow for renormalizing the Polyakov loop, which yield a consistent
continuum limit up to T . 400MeV.
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Figure 1: The singlet free energy FS(r,T ) is nu-
merically similar to the zero temperature static en-
ergy V (r) up to rT . 0.45.
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Figure 2: The effective coupling αQQ̄(r,T,6) high-
lights the transition between confining and screen-
ing regimes. The quadratic rise of the black band
for T = 0 indicates the string tension.

3.2 Color-singlet free energy FS(r,T )

Applying the previously discussed steps to the color-singlet Wilson line correlator CS(r,T,Nτ),
we compute f sub

S (r,T,Nτ)= fS(r,β ,Nτ)−2 f bare
Q (β ,Nτ), the subtracted color singlet free energy. As

for the Poylakov loop, interpolation in the temperature is required for continuum extrapolation at
fixed temperature. Moreover, the available lattice distances r/a(β ) correspond to different physical
lengths for different β . We correct for leading cutoff effects of the tree-level gauge action at short
distances by using the improved distance ri (see e.g. [14]) instead of bare distance rb and interpolate
in the distance. We perform both pointwise continuum extrapolation for each temperature and
distance and with a global fit using a polynomial Ansatz similar to eq. (3.1) in both the temperature
and the distance. Finally we add the continuum limit of the renormalized asymptotic value, 2 fQ(T ),
and obtain the renormalized singlet free energy. The continuum limit of this result is shown together
with the static energy at zero temperature, V (r), in figure 1. Both quantities are numerically similar
up to rT . 0.45. This indicates a regime of almost vacuum-like physics with medium effects
suppressed for small rT . We define an effective coupling constant αQQ̄(r,T ),

αQQ̄(r,T,Nτ) =−
3
4

r2 ∂E(r,T,Nτ)

∂ r
, E(r,T,Nτ) = {FS(r,T,Nτ),V (r), . . .}, (3.2)

to make these two regimes even more explict. αQQ̄(r,T,Nτ) has only mild Nτ dependence. We show
show αQQ̄(r,T,6) together with αQQ̄(r,0) obtained from the T = 0 static energy V (r) in figure 2.
The maximum defines a distance rmax(T ) where screening overcomes the string tension. Thus, we
can identify vacuum-like behavior for r < rmax(T ) and the onset of color screening for r > rmax(T ).

3.3 Color-averaged free energy Favg(r,T )

We compute f sub
avg (r,T,Nτ) = favg(r,β ,Nτ)−2 f bare

Q (β ,Nτ), the subtracted color-averaged free
energy, by applying the same machinery to the Polyakov loop correlator CP(r,T,Nτ). It can be
written in terms of the color-singlet free energy and the color-octet free energy1,

exp [− favg(r,β ,Nτ)] = 1/9 exp [− fS(r,β ,Nτ)]+8/9 exp [− fO(r,β ,Nτ)]. (3.3)

1The decomposition of the QQ̄ free energy into singlet and octet contributions can be rigorously derived in the small
distance limit using effective field theory approach [15].
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Hadronic states with a QQ̄ pair in color-octet configuration require valence gluons and corre-
spond to hybrid mesons, which are energetically disfavored at low temperatures. Moreover, inter-
actions at short distances in the octet channel are repulsive. Hence, we expect that the free energy
is dominated by the singlet contribution for short enough distances: Favg(r,β ,Nτ)≈ FS(r,T,Nτ)+

T log9. We account for the trivial color factor T log9 and show the modified continuum limit of
the color-averaged free energy together with the static energy at zero temperature, V (r), in figure 3.
Differences between Favg(r,T )−T log9 and V (r) due to thermal modification become significant
for much smaller r due to the contribution from states in color-octet configuration. Results for
the Polyakov loop correlator up to T ≤ 350MeV using stout-smeared staggered quarks that were
presented in [16] are consistent with our results.
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Figure 3: Once a trivial color factor T log9
is subtracted from the color-averaged free energy
Favg(r,T ) it is numerically similar to the zero tem-
perature static energy V (r) up to rT . 0.15.

3.4 Cyclic Wilson loop
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Figure 4: The ratio R for T ≈ 330MeV exhibits
the linear divergence.
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Figure 5: HYP smearing regulates the linear diver-
gence. Different amounts nhyp are needed for Nτ = 8
(open symbols) and Nτ = 10 (filled symbols).

The cyclic Wilson loop and singlet or octet free energies defined in terms of the Wilson line
correlator are not straightforwardly related due to both the linear divergence and finite differences
that are analytic in rT and independent of Nτ . Motivated by eq. (2.7), we take the ratio R(r,T,Nτ),

R(T,r,Nτ) =
WS(T,r,Nτ)−CP(T,r,Nτ)

CS(T,r,Nτ)−CP(T,r,Nτ)
. (3.4)

The divergence is apparent since R decreases exponentially. The rate of decrease grows with in-
creasing Nτ as in figure 4. We show in figure 5 that the exponential decrease of R is greatly reduced
by HYP smearing and R eventually even rises slightly above 1. Hence, a sufficiently smeared cyclic
Wilson loops is a gauge invariant way to access static QQ̄ free energies.
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4. Conclusions

We have studied the Polyakov loop, its correlator, a color-singlet Wilson line correlator in
Coulomb gauge and the cyclic Wilson loop in full QCD with 2+1 flavors of quarks almost at the
physical point. We calculate free energies from these observables and study color screening.

The free energies of a static QQ̄ pair in the medium are consistent with the T = 0 static energy
V (r) for short distances, indicating vacuum-like physics. For larger distances, the normalized color-
averaged free energy Favg(r,T )−T log9 starts to deviate from V (r) at rT ≈ 0.15 due to its octet
contribution, whereas the color-singlet free energy FS(r,T ) stays close to V (r) up to rT ≈ 0.45. We
attribute this starting deviation to the onset of color screening, which is highlighted more explicitly
in an effective coupling constant αQQ̄(r,T ). The cyclic Wilson loop exhibits a linear divergence that
can be regulated by smearing such that it becomes numerically similar to the Wilson line correlator.
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