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1. Introduction

The meson SPFs at finite temperature in QCD provide us the knowledge to understand the
properties of the thermal medium. For example, the thermal dilepton production rate[1], which can
serve as a (quark-gluon plasma) QGP probe in heavy ion collisions, is related to the SPF in the
vector channel directly. The heavy quark diffusion coefficient which describes the propagation of a
heavy quark in the medium can also be determined from the slope of the SPF in the zero frequency
limit[2]. The fate of hadrons can also be read off from the structure of SPF at finite temperature and
can serve as a thermometer of QGP[3, 4]. The relationship between SPF and Euclidean correlator
can be obtained by using

GH(τ,~p) =
∞∫

0

dω

2π
ρH(ω,~p,T )K(ω,τ,T ) with K(ω,τ,T ) =

cosh(ω(τ− 1
2T ))

sinh( ω

2T )
. (1.1)

The extraction of SPF from correlation functions can not be done easily due to the fact that
analytic continuation is needed. To describe this function precisely at least O(1000) points are
needed, while the numerical correlator data is discrete which contains only O(10) points. Thus an
ordinary χ2 fitting is inconclusive. 1 To solve this ill-posed problem several methods have been
developed. The most popular method currently used is the Maximum Entropy Method (MEM)
which gives the most probable solution based on Bayesian inference[7, 8]. Other methods, e.g.
a new Bayesian approach[9], the Stochastic Analytical Inference (SAI)[10] and Backus Gilbert
Method (BGM) have been also applied recently[6, 11]. Since these methods are all based on
Bayesian inference, in this paper we will follow an approach not relying on Bayesian inference and
introduce a so-called Stochastic Optimization Method (SOM)[12] to extract SPFs from correlators.

2. Stochastic Optimization Method

The basic idea of the commonly used MEM is to obtain the most probable SPF from given
data by maximizing the conditional probability. A prior information on the SPF requires to be put
as a default model in MEM. The most probable SPF obtained from MEM can be proven to be
unique, if exists. The general idea of SOM, on the other hand, is to average all possible solutions
to obtain the final solution. All these possible solutions are independent with each other and are
obtained by minimizing the likelihood function. In this approach, no prior information, such as the
"default model" needs to be used. Since the real SPF is positive, the mock SPF initiated needs to
be positive.

To perform SOM firstly we define a target function, i.e. likelihood function, in the following
form

Q =
Nτ

∑
i, j=1

(Gi− G̃i)[C−1]i, j(G j− G̃ j) with Cik =
Ncon f

∑
j=1

(Gi−G( j)
i )(Gk−G( j)

k )

Ncon f · (Ncon f −1)
, (2.1)

where Ncon f is the number of configurations of the correlator data and Nτ is the number of data
points in each configuration. In Eq.(2.1) G( j) is the correlator of configuration j and G is the mean

1However, this approach still works if sufficient information on SPF are known such that number of fitting parame-
ters are much less than that of data points[5, 6].
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value of input correlator. G̃ is calculated from one possible solution ρ̃(ω,T ) by the following
expression

G̃(τ,T ) =
∫

∞

0

dω

2π
ρ̃(ω,T )K(ω,τ,T ). (2.2)

At a fixed temperature ρ̃(ω,T ) can be parameterized as a sum of many boxes

ρ̃(ω) =
K

∑
t=1

η{Pt}(ω) with η{Pt}(ω) =

{
ht ,ω ∈ [ct −wt/2,ct +wt/2]

0, otherwise
(2.3)

where wt , ht , ct are width, height and center of a box. If two boxes overlap, the heights of the two
boxes should be added up in the overlapped region.

For each attempt to obtain one possible solution ρ̃(ω) we focus on two aspects. The first is the
generation of different configurations of boxes. This can be realized by eight different elementary
updates which reshape these boxes. The second is the selection of generated configurations. These
operations are performed aiming to minimize the target function Q defined in(c.f. Eq. (2.1)). To
avoid falling into local minima when minimizing Q the Simulated Annealing Algorithm (SAA) is
adopted. In SAA the cooling process is controlled by a fictitious temperature which decreases as
Ti+1 = Ti · decayscale and finally stops at a rather small value Tstopping close to 0, like 0.0001 in
practice. This temperature determines whether to accept or reject the generated configuration with a
probability Padopt =min{1,exp(−δQ/Ti)}where δQ is the difference of Q between two successive
elementary updates. The number of elementary updates performed for each temperature is called
markovlength. And it can be proven theoretically that the global minima can be reached if: (I)
Tstopping is close enough to 0, (II) decayscale is close enough to unity, (III) markovlength is long
enough[13]. The configuration given at Tstopping is regarded as a possible solution. By repeating
the whole procedure L times and then averaging over these L possible solutions an optimal SPF
can be obtained.

By elementary updates we mean a random change of the parameter sets {Pt} = {ht ,wt ,ct}
of the boxes. During the updates the number of the boxes are kept fixed. And the change of
parameters must satisfy the domains of definitions of a box Ξ, are ht ∈ [hmin,hmax], wt ∈ [wmin,wmax]

and ct ∈ [ωmin,ωmax]. Each elementary update of the optimization procedure is organized as a
proposal to change some continuous parameter ξ by a randomly generated change δξ in a way
that the new value ξ + δξ belongs to ξ ’s domains of the definition Ξξ . To minimize the target
function more efficiently we use a parabolic interpolation to find an optimal value of the parameter
change ξopt = −b/2a, which gives the extremum value of the fitting function f (ξ ) = aξ 2 +bξ +

c. The coefficients a,b,c can be obtained by fitting to points (ξ ,Q(ξ )), (ξ + δξ ,Q(ξ + δξ )) and
(ξ + δξ/2,Q(ξ + δξ/2)). In the case a > 0 and ξopt ∈ Ξξ we adopt the increment which gives
the smallest target function value among δξ , δξ/2 and δξopt . Otherwise, if ξopt is outside Ξξ or
a≤ 0, one just need to adopt Min(Q(ξ +δξ ), Q(ξ +δξ/2)). The elementary updates used in SOM
are listed as follows:

(I) Shift box. Vary the center ct of a randomly selected box stochastically. The continuous
parameter is restricted to be in the domain of definition Ξct = [ωmin,ωmax]. The part of the box
which goes beyond Ξct is treated to be a new box whose left side located at ωmin.
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(II) Lengthen/shorten box. Increase/decrease the height of a randomly chosen box keeping the
center ct fixed. The continuous parameter ξ = ht is restricted by Ξht = [hmin,hmax].

(III) Broaden/narrow box. Increase/decrease the width of a randomly chosen box keeping the
center ct fixed. The continuous parameter ξ = wt is restricted by Ξwt = [wmin,wmax].

(IV) Swap part of the height/width between two boxes. Choose two boxes A and B randomly.
Cut part of the height/width of A and add this part to B. The centers of box A and box B are fixed.
The continuous parameter ξ is set to be the height/width of the box A, i.e. ht(A)/wt(A) which
is restricted by Ξht = [hmin,hmax]/Ξwt = [wmin,wmax]. Meanwhile the height/width of the box B
ht(B)/wt(B) must also be restricted by Ξht /Ξwt . The area can be changed if needed. This update
aims to make a connection between two boxes helping to avoid the local minima more efficiently.

3. Analysis with mock data

To check the applicability of SOM to extract SPF and its dependence on the quality of lattice
data, we test SOM with mock data first. Unless clearly pointed out, the test results shown below
are for a single solution and Nτ is set to be 96. The error on the mock data is chosen to Gaussian-
distributed with error = 0.0001 ·G(τ) · τ .

The general structure of SPF includes a transport peak, several resonance peaks and a contin-
uum part. The transport peak is reflected in the intercept of a SPF. So first we start from a simple
case only with one broad Breit-Wegner (BW) peak in SPF

ρ(ω̃) =
ω̃η

π((ω̃−M)2 +η2)
(3.1)

with a moderate intercept. Here M is the peak-location of the BW peak. The reproduced SPF is
shown in left hand side of Fig. 1. We can see that the output SPF from SOM can reproduce the input
SPF, i.e. the broad BW peak very well. Then we increase the intercept by adding an additional
term aω̃exp(−3ω̃) to the mock SPF to see how SOM performs. This term does nothing but gives
a contribution to the intercept since it decreases rapidly in large ω̃ region. The constant a controls
the magnitude of the additional term. As we can see from the right hand side of Fig. 1 SOM still
works very well in this case.
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Figure 1: Mock data test with a BW peak only. Left: Intercept is set to be 0.32. The inset shows for a small
ω̃ range to show the intercept clearly. Right: Same as the left plot but intercept is increased to 1.32.

Next we add an increasing continuum to a transport peak as follows
ρ

ωT
=

aη

(ω

T )
2 +η2 +b · (ω

T
)tanh(

4ω

T
) (3.2)
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to see the influence of the continuum part on the reconstruction of the intercept. As shown in
Fig. 2 we can see a too large/small intercept cannot be reproduced very well as the continuum
gives the dominant contribution to the correlator. The reason for a large intercept is that a lot of
boxes are needed around the boundary, however, for a stochastic method boxes are more inclined
to move right to contribute to the large ω region. For a small intercept, the value of this intercept is
comparable to the maximum height of a single box so the noise dominates in the small ω region.
Anyway, in both cases the continuum part is reproduced except for some fluctuations.
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Figure 2: Mock data test with a BW peak + continuum. Left: Intercept is set to be 0.17. The small figure
inside is for a small ω̃ range to show the intercept clearly. Right: Same as the left plot but intercept is
increased to 17.

Now we look at the case with more resonance peaks only. This time we have four modified
BW resonances and the first two are relatively sharp. To mimic the situation at T < Tc we do not
introduce a transport peak. The mock SPF is in the form of

ρ

ω2 = Θ(ω̃− εth)
4

∑
i=1

ai · (ω̃− εth)

(ω̃−Mi)2 +ηi
2 (3.3)

starting at the threshold εth. Here ai is constant and Mi denotes the peak-location of the resonance.
It can be seen from Fig. 3 that although the peak heights of first two resonances are a bit lower than
mock SPF the general features of SPF can be reproduced very well by SOM.
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Figure 3: Mock data test with 4 resonance peaks. Left: Whole ω̃ range. Right: Small ω̃ range.

At last we consider the influence of continuum part on sharp resonance(s). In this test we use
two sharp BW resonances and an almost constant continuum

ρ

ω2 = Θ(ω̃− εth)

( 2

∑
i=1

ai · (ω̃− εth)

(ω̃−Mi)2 +ηi
2 +b · tanh(ω̃− εth)

)
. (3.4)
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As we can see in the left hand side of Fig. 4 that the first two resonances are reproduced well and the
continuum part also appears except for the fluctuations. We conclude that the constant continuum
will not affect the sharp resonances much. To suppress fluctuations we average over 100 solutions
and the result is shown in the right hand side of Fig. 4.
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Figure 4: Mock data test with 2 resonance peaks + continuum. Left: A Single solution. Right: The final
solution obtained by averaging over 100 solutions.

4. Real lattice data results

We applied SOM to the real lattice data taken from Ref.[14] with Nτ=96, 48, 32. Fig. 5 shows
the SPFs of charmonium in vector channel at T = 0.73Tc,1.46Tc and 2.20Tc. This result is averaged
over 100 possible solutions. As shown in the left plot, the transport peak is obtained but it has to
be pointed out that the accuracy of this transport peak can still be improved. From the right plot we
know the first peak-location below Tc is 3.44 GeV which is similar to the screening mass extracted
from the corresponding spatial correlation function, i.e. 3.472 GeV. It can be also clearly seen that
at T > Tc the transport peak is obtained and as temperature increases, the resonance peaks start to
disappear. Tab. 1 lists the locations (in [GeV]) and peak-heights of first peaks of charmonium in the
vector channel at different temperatures obtained from SOM and MEM[14]. We can see that the
peak-locations obtained from SOM are quite similar to those from MEM while the peak-heights by
SOM are larger.
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Figure 5: SPFs of charmonium in vector channel at different temperatures.

5. Conclusion

A Stochastic Optimization Method is proven to be reliable when tested by mock SPFs includ-
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0.73Tc 1.46Tc 2.20Tc

SOM 3.44/1.75 4.8/0.72 4.1/0.57
MEM 3.48/0.98 4.7/0.58 −−

Table 1: Peak-locations in [GeV] (the first value) and peak-heights (the second value) from SOM and MEM.

ing transport peaks, resonance peaks and continuum spectra. When applied for extracting spectral
functions from temporal Euclidean correlation functions obtained in lattice QCD, SOM also gives
results comparable to those from MEM. In the near future we will apply this method to temporal
correlators obtained on finer lattices.
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