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1. Introduction

Ongoing Heavy Ion Collision experiments conducted at facilities like RHIC and LHC pro-
vide new output about the nature of elementary particles and their interactions. Direct photons
and dileptons (e+e−,µ+µ−) are especially good probes of the QGP, as they are produced in every
stage of its evolution and their coupling to other QGP constituents is small [1, 2]; once they are
produced, they leave the interaction region largely unmodified. The latest experiments PHENIX
and STAR provide indications of thermal enhancements of dilepton spectra in the small to medium
invariant mass region [3, 4], which is the scale at which modifications by the surrounding ther-
mal medium take place. On the other hand, the spectral function in the vector channel at finite
temperature provides theoretical information on the thermal dilepton rates accessible in those ex-
periments [5], which renders it a worthwhile object to study from theory. Especially the small
frequency region of the spectral function contains information on important dynamical quantities
like the charge diffusion constant and the electrical conductivity of the plasma [6]. Because this
regime is also inherently non-perturbative, the use of lattice QCD data is implied. The following
work is a systematic extension of our former investigations on the light vector spectral function at
finite temperature [7], and discusses structural changes in the Ansatz and what information we can
gain from these.

A well accessible quantity on the lattice is the correlation function in a given mesonic chan-
nel. It inhibits dynamical properties of the QGP state when investigated at finite temperature. As
such, the light vector correlator is related to the electrical conductivity σ of the QGP, the dilepton
rate dW

dωd3 p and the photon rate dR
d3 p as measured in heavy ion collision experiments, via its spec-

tral function ρV [8]. While in general spectral functions relate to correlators through an integral
equation,

G(τ,~p) =
∞∫

0

dω

2π
ρ(ω,~p,T )K(ω,τ,T ) with K(ω,τ,T ) =

cosh(ω(τ− 1
2T ))

sinh( ω

2T )
, (1.1)

transport coefficients are related to the spectral functions via Kubo formulas. Examples of these
are the shear and bulk viscosity obtained from energy momentum tensor correlation functions, the
heavy quark momentum diffusion coefficient from color electric correlators [9], and the electri-
cal conductivity, related to the light vector spectral function [7]. These relations imply that once
the spectral function of the vector channel is extracted from QCD, important insights into non-
perturbative phenomena of heavy ion collisions and the QGP can be gained.

In order to determine the spectral function, however, the Fredholm Type-I equation (1.1) has
to be inverted, which is often referred to as an "ill posed" problem [6]. In our case it is a discrete
problem, as we can access the value of the correlation function only at a finite number of points in
τT . The basic idea is that the numerical (temporal) correlator data contains O(10) points, while
a solution should be much more fine grained, ideally even continuous. This means there is more
information desired on the r.h.s. than is actually provided on the l.h.s. Any approach to solving an
ill posed problem, i.e. regain uniqueness and stability, must add information in order to "regular-
ize" the problem and thus render it at least "better posed", with an important approach being the
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Figure 1: The continuum extrapolations for all three temperatures. The difference between the data at
T = 1.1Tc and the other two datasets is attributed to originate from a difference in the corresponding suscep-
tibilities.

Bayesian methods. In the present work we choose the necessary additional information to enter
the procedure in the form of a phenomenologically inspired Ansatz, which is fitted to continuum
extrapolated lattice QCD correlation functions.

2. Lattice setup

The renormalized isovector correlation function is constructed as

Jh = ZV ψ̄(x)γhψ(x) → GH(τ,~x) = 〈Jh(τ,~x)J
†
h (0,~0)〉 → GH(τ,~p) = ∑

~x
GH(τ,~x)ei~p~x, (2.1)

where ZV is the appropriate renormalization constant, non-perturbatively determined in [10], and
H = hh = 00, ii is a specific component of the vector correlation function. The point to point
correlators are projected to definite momentum ~p by summing over all spatial coordinates, In this
study we constrain ourselves to the case ~p = 0. Splitting the correlation function (2.1) into spatially
and temporally polarized components, defining for H =V in Euclidean metric GV = Gii +G00, we
form a ratio of correlation functions

Rii =
T 2

χq

Gii(τT )

G f ree,lat
V (τT )

, with Gii ≡∑
i

Gii, χq =−G00/T, (2.2)

where Gii is normalized by both the free, massless correlator on the lattice [11], and the quark
number susceptibility χq/T 2. Lattice calculations have been performed in the quenched approxi-
mation using the standard Wilson gauge action and the non-perturbatively improved Wilson-Clover
action [12] for the valence quarks. The hopping parameters κ are tuned such that the valence quark
masses are small, corresponding to mMS(µ = 2GeV ) ∼ O(10MeV ) in the MS scheme. For each
temperature, three increasingly finer lattices with constant temperature are considered to allow for
linear extrapolations in a2 to the continuum, see [7, 13] for the details of the continuum extrapo-
lation procedure. However, we stress here that an estimate of the continuum covariance matrix of
the correlation function is available for all temperatures. A comparison of the continuum ratios for
all three temperatures is shown in Fig. 1. Because the difference between T = 1.1Tc and T > 1.1Tc

is attributed mostly to a difference in the quark number susceptibilities, we expect the underlying
spectral functions also to be very similar for all three temperatures.
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3. Fitting to the data

In order to extract the vector spectral function via (1.1) we employ an Ansatz for its spatial
part:

ρans(ω,T ) =χqcBW
ωΓ

ω2 +(Γ/2)2 +
3

2π
(1+ k)ω2 tanh

(
ω

4T

)
≡ρBW(ω,T )+(1+ k)ρ free

V (ω,T ).
(3.1)

It consists of two constituents: a Breit-Wigner peak, governing the behavior in the low ω region,
and a modified version of the free, massless continuum spectral function. The modification param-
eter in the latter case fulfills k = αs/π at leading order perturbation theory [13]. This Ansatz is
inspired by the known relations for massless continuum spectral functions in the non-interacting
case [14], especially

ρ
free
ii (ω,T ) = 2πT 2

ωδ (ω)+
3

2π
ω

2 tanh(
ω

4T
). (3.2)

The δ -function in the spatial part is expected to be smeared out upon the onset of interactions [15].
Following the analysis in [13], motivated by arguments from kinetic theory, the δ -function is mod-
eled to become a Breit-Wigner peak ρBW under this melting effect. The fit itself is performed by
properly rescaling ρans with the free correlator and the quark number susceptibility, and especially
by taking into account all statistical correlations among the data points by utilizing the correspond-
ing covariance matrix of the continuum data. However, the information about the small ω region is
most distinct in the large τT region of the correlator [16], i.e. around its midpoint. We thus extract
the second thermal moment from the continuum data, which is sensitive to this frequency region,
and account for it in the fit procedure as an additional constraint, see [13].

4. Results

The fits with Ansatz ρans have been done in [7]. They work well for all three temperatures
with χ2/dof ∼ 1.1, yielding estimates of the spectral function and thus electrical conductivities
and dileptonrates. The spectral function at T = 1.1Tc is shown here exemplarily in Fig. 3. How-
ever, the choice of the Ansatz is a central systematic in this procedure. In the next section we thus
complement our earlier analysis by developing two structural changes in our Ansatz, and discuss
what conclusion can be drawn from the respective modified Ansatz and its fit to the continuum
extrapolated correlator data.

4.1 Squeezing the Breit Wigner peak

First of all, instead of using a Breit-Wigner peak for the low frequency part of the spectral
function, we change it to be a real δ function with variable height,

ρδ (ω) = aχqωδ (ω)+(1+ k)ρ free
V (ω). (4.1)

Up to the parameter k this is essentially the free case, see (3.1). The free case should yield an infi-
nite conductivity, thus the above Ansatz ρδ should be incompatible with our interacting continuum
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Figure 2: Left: Fit of a real delta peak in the low frequency region. The points at τT = 0.535 are the thermal
moment and its result, respectively. Note how the thermal moment is described much worse than any other
data point. Right: The spectral function resulting from the fit of the (coarse) model ρflat for all temperatures.

data. Performing the fit with Ansatz ρδ we find that the procedure yields values of χ2/dof ∼ 1.5
for the two lower temperatures, and χ2/dof ∼ 2.5, for 1.4Tc. Looking at the resulting correlators,
shown examplarily in Fig. 2 (left) for 1.2Tc, we see that the curve obtained by fitting with the covari-
ance matrix included really underestimates the correlator data points systematically by an amount
of one standard deviation or more. Specifically, the fitted thermal moment, shown at τT = 0.535
in the plot, drastically deviates from the data. We conclude that the Ansatz does not describe the
data sufficiently and also place an emphasis on the importance of accurately determined thermal
moments for the analysis. However, when we perform the fit without the covariance matrix in the
minimizing χ2 term, we end up with a function that reconstructs the data points very well, even
shows the usual small χ2/dof ∼ O(0.1), which is typical for missing correlations. The second
thermal moment is still a bit off, however, albeit it describes the data point much better compared
to the fit with the covariance matrix included. This again underlines the sensitivity of the thermal
moments to the low frequency region. Apart from this, we can reverse the argument and see that
the insufficient fit Ansatz ρδ fails to describe the data only if the information of the full covariance
matrix is incorporated in the fit. In this sense we find that including covariances in the fit procedure
measurably enhances our resolution of the spectral function in the low frequency region.

4.2 Stretching the Breit Wigner peak

Second, our Ansatz is motivated by kinetic theory and hydrodynamical arguments. On the
other hand, in the strong coupling limit the vector spectral function can be obtained from the
AdS/CFT correspondence. The resulting spectral function usually has no peak structure in the
low frequency region [17], consisting for small ω of a flat, ’featureless’ shape in ρ/ω and gradu-
ally turning into a typical large frequency behavior. A simple Ansatz roughly showing this behavior
is given by

ρflat(ω) =aχqω

(
1− Θ̃(ω0,∆0)

)
+(1+ k)ρfree(ω)Θ̃(ω1,∆1). (4.2)

The functions Θ̃(ωi,∆i) =
(

1+ exp
(

ω2
i −ω2

ω∆i

))−1
are smoothed Heaviside functions. This is of

course a very rough model: there is some arbitrariness in the choice of ωi and ∆i, and thus we do
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Figure 3: Left: The solutions of different Ansaetze compared for T = 1.1Tc. Note that the difference
between ρpert and ρans is most pronounced at T = 1.1Tc. Center: Integrating ρ/(ωT ) up to ωmax, i.e.
numerically computing its primitive function for T = 1.1Tc. Right: The thermal moments for all T and their
respective reconstructions from the fit, shown for all three models ρans, ρflat and ρpert.

not want to present definite results for dileptonrates or conductivities obtained from this Ansatz.
But for our purpose of testing a non peaked, flat low frequency region, it will be appropriate. When
fitting ρflat to the data, we tune the cut positions ωi and the smoothing parameters ∆i in such a way
that the result from the fit roughly describes the flat, featureless characteristic of the AdS/CFT so-
lution. The fits work well for a range of cuts at ωi and smoothing parameters ∆i, with χ2/dof∼ 1.1
for 1.1Tc,1.4Tc and χ2/dof ∼ 0.5 for 1.2Tc, see Fig. 2 (right) for the resulting spectral functions.
The interpretation of this is first, that qualitatively this type of solution, being featureless in the low
frequency region, fits our data just as well as a broad Breit-Wigner peak does. The resulting elec-
trical conductivities, although somewhat dependent on ωi and ∆i, are always located close to the
lower bound of the ones obtained by fitting ρans, see [7]. Comparing ρans and ρflat in Fig. 3 (left),
we see that, although the functions themselves have different shapes, the area under both is very
similar in the low frequency region. Fig. 3 (center) shows the primitive integral of ρ/(ωT ), which
reveals that there is a range of frequencies, roughly ω/T & 3, for which the areas under the curves
are the same. There is a sum rule found in perturbation theory [8], which states that the area under
ρ/ω over the peak region is independent of the coupling, i.e. fixed for our purposes. This makes
information about the exact shape of the spectral function for low frequencies difficult to obtain
using euclidean data, because for small frequencies K(ω,τ,T )→ 2/ω , independent of τ , and thus
(1.1) is fulfilled for any spectral function whose low frequency region merely has the correct area.
This effect we clearly also see in our fit procedure working on non-perturbative continuum data,
and thus a flat shape like ρflat naturally also leads to smaller electrical conductivities than e.g. ρans.
Because constraining the fits with the thermal moment is generally found to increase their quality,
we also show the corresponding fit results in Fig. 3 (right). For T = 1.1Tc and T = 1.4Tc the fits
work better for ρans than for ρflat, but the deviations of the latter are within error and, unlike for
ρδ , we cannot clearly differentiate the models this way without having a higher accuracy on the
thermal moment.

5. Conclusions

We extent an earlier analysis of the light vector channel spectral function, which was done
using quenched Wilson valence quarks extrapolated to the continuum at three temperatures. The
continuum correlators show, within errors, no temperature dependence. Different systematics re-
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lated to the Ansatz are investigated. As a consequence, we find an essential improvement of the
fit with respect to the low frequency region when performing the fit fully correlated, as opposed
to neglecting the covariances of the data. Fitting an Ansatz inspired by the phenomenology of a
strongly coupled QGP shows a comparable fit quality to the Ansatz motivated by a quasiparticle
description, which implies that our procedure at this time does not resolve a difference between
these two scenarios. This is also reflected by the fact that both spectral functions fulfill a sumrule
valid in the low frequency region. The thermal moments, obtained from a seperate continuum ex-
trapolation, are found to be sensitive to the low frequency region of the spectral function also in
our systematic checks, and thus enhance the results from the fits. However, the fit to ρflat shows the
importance to have a high accuracy in the data, especially the thermal moments.
Acknowledgments: The results have been achieved using the PRACE Research Infrastructure
resource JUGENE based at the Jülich Supercomputing Centre in Germany and the Bielefeld GPU-
cluster resources. This work has been partly supported by BMBF under grants 05P15PBCAA and
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