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1. Introduction

The properties of hadrons may be effected by the presence of a thermal medium. Examples
of these effects include e.g. a thermal mass shift, thermal broadening, the melting/dissolution of
hadrons and degeneracy due to chiral symmetry restoration [1]. For mesons, in-medium effects
have been analysed intensely on the lattice, both for light quarks and for heavy quarks (quarkonia),
see e.g. Ref. [2] for a recent review. However, similar lattice studies involving baryons are rather
limited: screening masses were studied some time ago [3, 4] and a study of temporal correlators
for quenched QCD can be found in Ref. [5]. The first detailed lattice study of nucleons at finite
temperature across the deconfinement transition was presented recently in Ref. [6], where parity
doubling was seen to emerge as the temperature is increased. Moreover, in the confined phase the
nucleon ground state appeared to be largely independent of the temperature, whereas temperature
effects are substantial in the negative-parity (N∗) channel. These results might be relevant for
further developing e.g. parity-doublet and other models attempting to explain the role of chiral
symmetry in the hadronic spectrum [7–11].

The next step in the analysis will be the study of nucleon spectral functions [12]. In order to
prepare for that, we study here nucleon spectral densities in the absence of interactions, both in the
continuum and on the lattice. A comparison of the two allows us to look at discretisation effects
and, in particular, lattice artefacts at higher energies.

2. Calculation of the free nucleon propagator

The free nucleon propagator may be calculated by considering a nucleon composed of three
non-interacting quarks produced at a point (0,0) and propagating to the point (x,τ) where it anni-
hilates. As the quarks are non-interacting, they are not confined: hence the quantitative results are
relevant at very high temperature in the quark-gluon plasma due to asymptotic freedom. Neverthe-
less, since we use operators with the same quantum numbers as the nucleon, we will refer to the
correlator as the nucleon correlator, etc.

-r r

-

-

(0,0) (x,τ)

Figure 1: A nucleon is produced at point (0,0) and propagates to the point (x,τ) where it annihilates.

We introduce the proton and antiproton interpolating fields as follows,

Oα = εabc[dT
a C−1

γ5ub]uα
c , Ōα ′ = εa′b′c′ ūα ′

a′ [ūb′γ5Cd̄T
c′ ]. (2.1)
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where the Greek letters correspond to the Dirac components, the Latin letters to the colour compo-
nents and u and d denote the flavour content. The charge conjugation matrix is defined as C = iγ2γ4.

The quark propagator is decomposed as

Sab(x) = 〈ψa(x)ψ̄b(0)〉= δab

[
4

∑
ν=1

Sν(x)γν + I4Sm(x)

]
, (2.2)

where ψ = u,d. The two-point correlation function may then be expressed as a combination of
gamma matrices and B coefficients,

Gαα ′(x) = 〈Oα(x)Ōα ′(0)〉= ∑
ν

Bν(x)γαα ′
ν + Iαα ′

4 Bm(x), (2.3)

where the B coefficients are given by [13]

Bµ = 6Sµ

(
5∑

ν

SνSν +7SmSm

)
, Bm = 6Sm

(
7∑

ν

SνSν +5SmSm

)
. (2.4)

For simplicity we have here used degenerate light quarks, u = d = l. We consider nucleons at zero
momentum only and sum over x.

3. Spectral functions

In order to determine the nucleon spectral functions, we express the B coefficients in terms
of an integral over a kernel and the spectral function. For mesons, the spectral relation is given
by [14, 15]

G(τ) =
∫

∞

0

dω

2π
K(τ,ω)ρ(ω), (3.1)

where the bosonic kernel reads

K(τ,ω) =
cosh(τ̃ω)

sinh(ω/2T )
= [1+nB(ω)]e−ωτ +nB(ω)eωτ , (3.2)

with τ̃ = τ−1/2T and nB(ω) = 1/(eω/T −1) the Bose distribution.
For baryons the spectral relations are more complicated and read [16]

B4(τ) =
∫

∞

0

dω

2π
Ke(τ,ω)ρ4(ω), Bi,m(τ) =

∫
∞

0

dω

2π
Ko(τ,ω)ρi,m(ω), (3.3)

where i = 1,2,3. The kernels Ke/o(τ,ω) are even/odd in ω respectively and given by

Ke(τ,ω) =
cosh(τ̃ω)

cosh(ω/2T )
= [1−nF(ω)]e−ωτ +nF(ω)eωτ , (3.4)

Ko(τ,ω) =− sinh(τ̃ω)

cosh(ω/2T )
= [1−nF(ω)]e−ωτ −nF(ω)eωτ . (3.5)

Here nF(ω) = 1/(eω/T +1) is the Fermi distribution. Note that the normalisation of the kernels is
such that Ko,e(τ,ω)→ e−ωτ in the zero-temperature limit.

Using the parity projector, P± = 1
2(I4± γ4), we construct the positive and negative parity-

projected correlation functions,

G±(τ) =
∫

d3x tr P±G(x) =
∫

d3x tr 〈P±O(x)Ō(0)〉= 2(Bm(τ)±B4(τ)) . (3.6)

Hence, ρ±(ω) = 2(ρm(ω)±ρ4(ω)). Since ρ4(−ω) = ρ4(ω) and ρi,m(−ω) =−ρi,m(ω), we note
here that ρ+(ω) =−ρ−(−ω).
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4. Contributing processes: Two-loop calculation

There will be contributions to the spectral function from the decay of a nucleon into 3 quarks
with momentum p, k and r (where r =−p−k), the reverse process and also all possible scattering
processes. At T = 0 only the first process contributes, while at nonzero temperature all processes
are present. The different combinations can be determined by "cutting" the diagram for the nucleon
propagator.
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Figure 2: The processes which contribute to the spectral functions are given by ω =±ωp±ωk±ωr.

The spectral densities may be written as (with c = 4, i,m)

ρc(ω) = 3
∫

p,k,r

dΦp,k,r ∑
sp,k,r=±1

[stat.]2πδ (ω + spωp + skωk + srωr) fc(ω,sp,sk,sr,p,k,r), (4.1)

where

dΦp,k,r =
d3 p

(2π)32ωp

d3k
(2π)32ωk

d3r
(2π)32ωr

(2π)3
δ (p+k+ r), (4.2)

[stat.] = nF(spωp)nF(skωk)nF(srωr)+nF(−spωp)nF(−skωk)nF(−srωr), (4.3)

and fc is dependent on the component c = 4, i,m.
The integrals can be performed numerically [16]. In the large ω limit (ω � T � m) we find

ρ4(ω) =
5ω5

2048π3

(
1+

112π4T 4

3ω4 + . . .

)
, ρm(ω) =

7mω4

512π3

(
1− 4π2T 2

ω2 + . . .

)
, (4.4)

where the dots indicate terms that are exponentially suppressed. At zero momentum ρi(ω) = 0.

5. On the lattice

In order to compute the spectral densities on the lattice we perform a two-loop summation
over the first Brillouin zone. We consider Wilson fermions, see Ref. [15, 16] for more details. The
maximum momenta (and hence energies) are determined by the edges of the Brillouin zones. There
are therefore lattice artefacts at large ω . We also observe lattice artefacts at small ω , which will
be discussed further in Ref. [16]. The structure of the spectral densities at large ω is familiar from
similar studies of lattice meson spectral functions [14, 15], although cusps are absent here.
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Figure 3: Spectral functions ρ4(ω) (left) and ρm(ω) (right) scaled with ω3m2 in the continuum and for three
values of Nτ , at fixed anisotropy ξ = as/aτ = 3.5 and quark mass m/T = 1.6. The inset shows the entire
domain where the lattice spectral functions are nonzero.

In the following we present some results, comparing lattice and continuum spectral functions.
Following Ref. [6] we use an anisotropic lattice, with ξ ≡ as/aτ ≥ 1. In Fig. 3 we show the spectral
functions ρ4,m(ω), scaled with ω3m2. In the inset the rise at large ω in the continuum can be seen,
ρ4(ω)/ω3 ∼ ω2 and ρm(ω)/ω3 ∼ ω , see Eq. (4.4). On the lattice the domain is limited due to
the finite Brillouin zone. As Nτ is increased at fixed m/T , the continuum limit is approached and
agreement over a larger range is observed. The main frames show a thermal enhancement of both
ρ4(ω) and ρm(ω) at ω ∼m∼ T . Note that the vacuum contribution only contributes when ω > 3m.
While ρ4(ω) is positive for all values of ω > 0, ρm(ω) is not and has a negative dip at ω ∼ m.

0 3 6 9 12
ω/m

0

0.005

0.01

0.015

ρ +,
−(ω

)/ω
3 m

2

ρ+(ω)
−ρ−(ω)

m/T=2

0 3 6 9 12
ω/m

0

2

4

6

8

10

ρ +(ω
)/ω

2 m
3

T/m=2
T/m=1.5
T/m=1
T/m=0.5

0 3 6 9
ω/m

0

2

4

6

8

ρ +(ω
)/ω

m
4

Figure 4: Left: Spectral densities±ρ±(ω)/ω3m2 with m/T = 2. Right: ρ+(ω) scaled with ω2m3 and ωm4

(inset) for four values of T/m.

In Fig. 4 (left) ±ρ±(ω) are shown. We note that ρ+(ω) > −ρ−(ω) for large ω . This is
expected since ±ρ±(ω) = 2(ρ4(ω)±ρm(ω)). Furthermore we observe that ±ρ±(ω) > 0 for all
ω > 0, even though ρm(ω) is not. Fig. 4 (right) shows ρ+(ω) at four temperatures. We see a
reduction of the thermal enhancement as the temperature is decreased. The inset shows ρ+(ω)

scaled with ω , to demonstrate that the apparent peaks depend on the choice of normalisation and
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do not correspond to a physical particle (bound state) in the spectrum.

6. Chiral symmetry, varying the anisotropy

In the massless case we find that in the continuum ρm(ω) = 0 and hence G+(τ) =−G−(τ) =
G+(1/T − τ) = 2B4(τ), which implies there is parity doubling [6]. However, on the lattice, the
Wilson term breaks chiral symmetry at short distance. This means that even for vanishing mass
parameter, ρm(ω) 6= 0, and G+(τ) 6=−G−(τ). This is demonstrated in Fig. 5 (left), where the non-
degeneracy of G±(τ) (and the resulting absence of the parity doubling) is shown. This plot should
be compared with the results in the interacting case [6], where the correlators are considerably
more skewed below Tc, due to the spontaneous breaking of chiral symmetry at low energies.
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Figure 5: Left: Euclidean correlators±G±(τ)/T 6 in the massless case for Wilson fermions. Right: Spectral
densities ρ4(ω)/ω3m2 at fixed m/T = 1.6 for different values of the lattice spacing asT = ξ/Nτ , each at
two values of ξ .

The lattice artefacts at large ω depend on the lattice cutoff. This is demonstrated in Fig. 5
(right), where ρ4(ω) is shown for three different values of the spatial lattice spacing as. Increasing
both Nτ and ξ shifts the maximal energy to larger values, similar to the mesonic case [15].

7. Conclusion

The perturbative calculation of baryon spectral densities involves a two-loop calculation, al-
ready at lowest order in the strong-coupling constant. Hence it is more involved compared to
mesonic spectral functions, where the leading behaviour is determined by a one-loop computation.
We have seen that at nonzero temperature, there is clear thermal enhancement at ω ∼ T ∼m, which,
depending on the normalisation, may take the form of a peak in the spectral function.

On the lattice there are lattice artefacts arising from the sum over finite Brillouin zones, both
at large and small values of ω . Since we have used Wilson lattice fermions, chiral symmetry is
broken at short distances, leading to a nondegeneracy in the two channels related by parity. This
effect is, however, much smaller than the effect of spontaneous chiral symmetry breaking at low
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temperatures in the interacting case. The next step will be the calculation of nucleon spectral
functions for the interacting case [12], using the correlators previously analysed in Ref. [6].
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