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1. Introduction

The question whether the U(1)A symmetry is effectively restored above the chiral phase tran-
sition is still open. In the well-known pattern of symmetry breaking in N f flavor QCD at low
temperature

SU(N f )L⊗SU(N f )R⊗U(1)V ⊗U(1)A→U(1)V ⊗SU(N f )V , (1.1)

the U(1)A symmetry is peculiar since it is violated by the quantum anomaly. It comes from the
presence of topological fluctuations that generate an anomalous contribution to the divergence of
flavor-singlet axial-vector current [1].

The answer to this question may have an impact also from a phenomenological viewpoint:
the order and the universality class of the phase transition depend on whether the axial symmetry
is restored or not [2, 3]. Models like the instanton gas [4] predict a suppression of the instanton
density and thus an effective restoration of the U(1)A symmetry at very high temperatures T � Tc

1,
in the domain of their applicability. Only recently the lattice QCD studies on this subject have
been (re)started at around the phase transition using several formulations of the fermion action and
focusing on different observables [5, 6, 7, 8, 9, 10, 11].

In the previous JLQCD work we studied the problem using the overlap fermion formulation
[5]. This guarantees exact chiral symmetry of the lattice action in the chiral limit. The Dirac spec-
trum and the meson correlator measurements both indicate a restoration of the U(1)A symmetry
in QCD with two degenerate flavors. A gap in the spectrum opens at temperatures above Tc when
the quark mass is decreased toward the chiral limit. At the same time, the disconnected diagrams
vanish, leading to a degeneracy of the correlators of the lightest mesons, which is a signal of the
restoring symmetry. The problem was also studied theoretically in [12] showing that with two
degenerate flavors the spectral density of the Dirac operator behaves like ρ(λ ) ∼ cλ 3 in the high
temperature phase. It implies that the U(1)A anomaly is invisible in the meson susceptibilities.
This result is compatible with our lattice simulations.

The most important source of systematic errors in the previous project was the need to fix the
global topology Q. In order to avoid this limitation we started a new series of simulations using the
Möbius domain-wall fermion formulation [13] with the code platform IroIro++ [14]. Compared
to the standard domain-wall formulation we have the advantage of having smaller residual mass,
i.e. better chiral symmetry. As we are showing in these proceedings, a precise chiral symmetry
is quite relevant for the study of the U(1)A problem and even Möbius fermions would not be
sufficient. Another important issue is the mass dependence: we only observe the restoration when
approaching the chiral limit. The current results are in accordance with the outcome of the previous
overlap project.

In the following sections we present the methodology of our analysis and discuss the results
that will be discussed in detail in an upcoming paper in preparation.

2. Analysis

We study N f = 2 QCD with the tree-level Symanzik improved gauge action and smeared
1Tc is the temperature of the chiral phase transition, namely the location of the peak of the susceptibility of the chiral

condensate.

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
9
6

On the axial U(1) symmetry at finite temperature Guido Cossu

Möbius domain-wall fermions. The details of this fermonic action are reported in [13] and are the
same as our zero temperature simulations [15]. Simulation points cover a region of temperatures
between 150 and 250 MeV with up to three different masses for the points just above the phase
transition. The measured residual mass above the phase transition is O(1) MeV for the coarser
runs, Nt = 8, and less than half a MeV for the finer runs, Nt = 12 [16].

We measure two main observables related to the axial U(1) symmetry: the eigenvalue spec-
trum ρ(λ ,m) of the hermitian Dirac operator (H ≡ γ5D) and the U(1)A susceptibility ∆ defined as
a difference of the susceptibilities of π and δ channels

∆ = χπ −χδ =
∫

d4x〈πa(x)πa(0)−δ
a(x)δ a(0)〉. (2.1)

It vanishes when the U(1)A symmetry is fully restored in the vacuum. This quantity has a simple
representation in terms of the Dirac operator eigenvalue spectrum:

∆ = lim
m→0

lim
V→∞

∫ 2m2ρ(λ ,m)

(λ 2 +m2)2 dλ = lim
m→0

lim
V→∞

( 2N0

V m2 + ∑
λi 6=0

2m2(1−λ 2
i )

2

V (λ 2
i +m2)2(1−m2)2

)
, (2.2)

where the limits must be taken in that order and N0 = |Q|, the number of zero eigenvalues of D. The
second equation comes from an expansion in the eigenvalues λi of the discretized overlap operator.
Notice that the term depending on the zero modes is expected to vanish in the thermodynamical
limit since a constant topological susceptibility χt = 〈Q2〉/V implies that N0/

√
V is constant, thus

N0/V → 0 when V → ∞2.
Another useful representation of the susceptibilities is obtained using traces of the Dirac oper-

ator propagators. In terms of the massive 4D quark propagator D−1
m , they are written as

χπ =
1
V

Tr[(γ5Dm)
−2], χδ =− 1

V
Tr[(Dm)

−2], (2.3)

after averaging over the source point.
We concentrate on ∆ and the discussion on the spectrum of the Dirac operator is given in

another paper of these proceedings [17].

3. Results

In this section we discuss the measurements of ∆, eq. (2.1), using domain-wall fermions.
We first show that ∆ can be seriously affected by lattice artifacts coming from the violation of
the Ginsparg-Wilson relation, {γ5,D} = 2aDγ5D, on coarse lattices. In order to eliminate this
discretization effect we discuss a procedure to reweight the partition function of the domain-wall
fermions to that of the overlap fermions that guarantee exact chiral symmetry. We then discuss the
results of this procedure on the ∆ measurement.

The measurement of ∆ is quite delicate in many aspects and the details of the method could
affect the final result. We observe that a simple integration of the correlator from a local source is

2Empirically, on a finite lattice the total number of zero modes is always equal to the number of left handed or right
handed modes
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highly sensitive to the position of the source, and this needs high statistics. This is explained by
the spatial location of the zero and lowest-lying modes of H. A source hitting one of these modes
would overestimate the final result and viceversa if far away. A stochastic estimate of eq. (2.3)
using a Z2 noise source all over the volume is more reliable in this respect.

3.1 Ginsparg-Wilson relation violation

Taking into account a possible operator V that represents the violation of chiral symmetry, the
Ginsparg-Wilson relation is rewritten as

{γ̂5,H0}= V , (3.1)

with γ̂5 ≡ γ5−H0, and H0 ≡ γ5D4d
DW(0) the massless hermitian Dirac operator. The spectral de-

composition of the susceptibilities can then be written including the effect of the matrix elements
Vnk = 〈ψn|V |ψk〉, where |ψn〉 satisfies Hm|ψn〉 = λn|ψn〉, an eigenmode of the massive operator
Hm. The details of this decomposition are discussed in [18]. We report the final equation that in-
cludes two independent quantities gn and hn that are defined in terms of Vnk matrix elements and
should be zero if {γ̂5,H0}= 0 is satisfied. The difference of susceptibilities is written then in terms
of the eigenvalues λn as a sum of two blocks:

∆ =
1

V (1−m2)2 ∑
n

2m2(1−λ 2
n )

2

λ 4
n

+
1

V (1−m)2 ∑
n

[
hn

λn
− 4gn

λn

]
. (3.2)

This exact decomposition allows a quantitative measure of the contribution to ∆ of the dis-
cretization artifacts that violate the Ginsparg-Wilson. These are the terms including gn and hn. It
turns out that for the coarsest lattices, Nt = 8, the violation terms account for about 60% of the total
signal, up to 97% in the worst cases. The finer lattices, Nt = 12, show typical deviations of less
than 10% with peaks of 30%. The susceptibility ∆ is highly sensitive to chiral symmetry violation
in the lowest part of the spectrum as seen in Figure 1. We show there the spectral decomposition
of the terms in the sum eq. (3.2) separating the full sum ∆ from the GW violating contribution,
black circles and red crosses respectively. It is evident that the low modes are the main source of
the signal and main source of the violation at the same time (notice the logarithmic scale).

3.2 Reweighting

Motivated by the previous results we reweight the results from our action to the one that
satisfies the GW relation exactly. We call it the overlap action below, but it has the same kernel as
the domain-wall fermion. The sign function approximation is improved by treating the low-lying
eigenvalues of the kernel exactly. We calculate the reweighting factor as described in [19]. We can
also perform the measurements on our Möbius domain wall fermion configurations using overlap
valence quarks. This procedure is called partial quenching since the Dirac operator in the partition
function has different discretization than the one used for the measurement.

The histogram of ∆ from the overlap operator spectral sum is shown in Figure 2, left. The
colors differentiate the topological sectors. The lightest color indicates the zero topology sector
that is expected to survive in the thermodinamical limit. The corresponding reweighted histogram
of ∆ is shown in the right panel. Notice that the rightmost peak in the Q=0 sector present in

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
9
6

On the axial U(1) symmetry at finite temperature Guido Cossu

323× 8
β=4.07, m=0.001

Δ π
 -δ

10−5

10−4

10−3

0.01

0.1

1

|λ|
0.01 0.1

323× 12
β=4.24, m=0.0025

10−6

10−5

10−4

10−3

0.01

0.1

1

|λ|
0.01 0.1

323× 12
β=4.24, m=0.01

10−6

10−5

10−4

10−3

0.01

0.1

1

|λ|
0.01 0.1

Figure 1: Eigenmode decomposition of the suseptibility difference ∆ for comparable temperatures
T ∼ 1.1Tc. Average in each bin of λ is plotted for full contribution (black circles) and for the contribu-
tion from the GW violating term (red crosses).

the partially quenched plot disappears after the procedure. This peak is coming from near zero
modes that have poor chiral symmetry properties. These modes are mostly localized in few lattice
spacings, another indication that they are lattice artifacts.

This observation, common to other ensembles, suggests that partial quenching could poten-
tially overestimate the result for ∆ and thus reweighting is essential to get a result that respects
chiral symmetry.

Collecting the reweighted averages we show the mass dependence for two temperatures above
the phase transition in Figure 3. We separate the averages for different topological sectors and
show only the one corresponding to Q = 0,1. In the Q=1 sector the central values are very close
to the predicted 1/m2 dependence, indicating that the signal is essentially coming from the single
zero mode. The bulk of the sum in eq. (2.2) is subdominant. As stated in the previous section,
the zero-mode term in the non trivial sector is expected to have a vanishing contribution in the
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Figure 2: Plot of the histograms showing the partially quenched result (left) and the reweighted one (right)
for the ∆ reconstructed from the overlap operator spectrum. The ensemble is 323× 12, β = 4.23, am =

0.0025, in physical units translates to T/Tc ∼ 1.05 with an estimated pion mass of about 210 MeV.
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Figure 3: Mass dependence of the reweighted ∆ for two temperatures close to the phase transition in the
finer lattices. The topological sector averages are separately plotted. The Q = 0 averages are extrapolated to
a result compatible to zero in the chiral limit.

thermodinamical limit. We thus consider the Q = 0 sector averages as and example of the physical
contribution surviving in the large volume limit. The plots for two temperatures close to the phase
transition show a suppression in the chiral limit of the difference of susceptibilities. The continu-
ous lines represent an extrapolation assuming a simple quadratic form. The extrapolated result is
compatible with zero within errors. It implies that the physical contribution to the axial symmetry
breaking disappears in the thermodinamical and chiral limit just above the phase transition.

4. Conclusion

The difference of susceptibilities ∆ = χπ − χδ is a probe for the axial U(1) symmetry. If ∆

is zero then the axial symmetry is invisible in the scalar meson channels and it appears restored
in that sector of the particle spectrum. We show that the measurement of ∆ is delicate and highly
sensitive to the level of chiral symmetry in the lattice action. A direct measure of the effect of the
artifacts to the averages of ∆ indicates that in the coarse lattices (Nt = 8, about 0.11 fm near the
phase transition) they account for the major part of the signal. The effect is reduced with the lattice
spacing but still can generate a significant contribution to ∆. We reweight the results to an action
that satisfies exactly the Ginsparg-Wilson relation. We show that a partially quenched measure of
∆ using the overlap operator can still be affected by artifacts in the low-mode region in comparison
to the corresponding reweighted result. The ∆ averages after the reweighting procedure show a
mass dependence that is compatible with zero in the chiral limit. Our current conclusion is that the
axial anomaly at T & Tc is invisible in the scalar meson channels. This result is compatible with
the previous conclusion using overlap fermions [5]. A detailed account of the measurement will be
reported in a series of papers in preparation.
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