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expected tricritical point probably due to the finite size effect.
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1. Introduction

Phase transitions in Quantum Chromodynamics (QCD) at finite baryon density have been
of great interest both from theoretical and experimental point of view. In the beam energy scan
program at Relativistic Heavy Ion collider (RHIC), higher order cumulants of event-by-event net-
proton number multiplicity distribution have been measured as a promising observable of the pos-
sible critical phenomena associated with the phase transition in QCD. Indeed, recent experimental
data on cumulants for high multiplicity events show non-monotonic behavior as a function of the
colliding energy. The values of the cumulants deviate from a non-critical baseline given by the
Skellam distribution [1], which corresponds to a distribution for the particle minus anti-particle
each of which follows the Poisson distribution.

One of the theoretical arguments relevant for the non-monotonic behavior of the net-proton
number cumulants is the influence of the QCD critical point [2]. Around the critical point, the kur-
tosis can be negative due to the three dimensional Z(2) criticality which is the expected universality
class for the QCD critical point [3]. Alternatively, the three-dimensional O(4) criticality around
the chiral phase transition can also lead to the anomalous behavior in the cumulants [4]. Since
the singular part of the kurtosis positively diverge from and above the critical temperature in the
chiral limit (m0 → 0), it has one negative peak between two positive peaks at finite quark mass.The
singular part of the second order cumulant (σ2) positively diverges at the critical temperature in the
chiral limit (m0 → 0). At finite quark mass, the divergence is smeared and σ 2 has a positive peak
at the pseudo-critical temperature. Then the fourth-order cumulant (κσ 4) should have a negative
region between the inflection points of σ 2, since κσ 4 is equivalent to the second derivative of σ2

with respect to µ̂ = Ncµ/T . These arguments are deduced from the universality arguments for the
singular part of the pressure based on the relevant symmetry breaking pattern of the phase transi-
tion in the thermodynamic limit. To interpret the experimental data, we need explicit calculations
to see how much criticality realizes in realistic cases including the regular part and finite volume
effects.

While so far such calculations have been carried out mainly by using chiral models, there are
four points which one needs to improve toward the results for QCD at physical points. First, we
need a theoretical framework with fluctuation effects beyond the mean field treatments, since the
critical behavior is governed by fluctuations of soft modes which gives critical exponents different
from the mean field values. Second, it is desirable to investigate the finite chemical potential effects
non-perturbatively, while it is generally difficult in the lattice QCD (LQCD). The third one is that
we should make calculations at light quark mass around the physical point, and hopefully we should
compare the results with those in the chiral limit, to understand the remnant of the Z(2) or O(4)
criticality. The fourth one is the finite volume effects. The thermodynamic and continuum limit
results should be compared with the finite volume results.

Strong coupling lattice QCD (SC-LQCD) satisfies three of the above four points except that
we cannot take the continuum limit [5–12]. SC-LQCD provides an approximate framework start-
ing from the lattice QCD action, assuming that the coupling constant is sufficiently large; we ex-
pand the partition function in 1/g2 by evaluating the plaquette term (∝ 1/g2) effects perturbatively.
While the lattice spacing is coarse and we can describe only the confined objects in SC-LQCD, it
can describe the chiral phase transition by using the strong coupling action with fermions even in
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the chiral limit. Recently, it has been demonstrated that we can take account of fluctuation effects
in SC-LQCD by using the monomer-dimer-polymer (MDP) simulation [13–15] and auxiliary field
Monte Carlo (AFMC) method [16]. In the strong coupling limit, the sign problem is so mild that
we could study the chiral phase transition with fermions [14, 16]. By integrating out the (spatial)
link variables first in MDP (AFMC), we obtain the effective action composed of color singlet quark
composites. States specified by color singlet auxiliary fields or MDP loop configurations would be
closer to eigen states of QCD, then the complex phases could be suppressed.

In this work, we utilize one species of unrooted staggered fermion, which corresponds to
N f = 4 in the continuum limit but has O(2) symmetry at finite lattice spacing. Since the sign of
the relevant critical exponent in O(2) is the same as that in O(4) realized in the massless two-flavor
case, we could anticipate that the higher-order cumulant ratios show qualitatively similar behavior
in O(2) and O(4) cases. We perform Monte Carlo simulations for auxiliary fields to take account
of mesonic fluctuation effects in the chiral limit. In this proceedings, we will show numerical
results of higher order cumulant ratios of the net-baryon number at finite temperature and chemical
potential to 84 lattice in the chiral limit.

2. Effective action of strong coupling lattice QCD in Auxiliary field Monte Carlo
method in the strong coupling limit

In this section, we introduce the auxiliary field effective action in the strong coupling limit
developed in Ref. [16]. We consider here a lattice QCD action for color SU(Nc = 3) with one
species of unrooted staggered fermion, that has O(2) symmetry at finite lattice spacing, on an
anisotropic lattice in d+1 dimensional (d = 3) spacetime. Temporal and spatial lattice sizes are
denoted as Nτ and L, respectively. We set the lattice spacing as a = 1 throughout this paper. In the
strong coupling limit, we could ignore the plaquette terms. The effective action is obtained in the
strong coupling limit and in the leading order of the large dimensional expansion [6] by integrating
out spatial-link variables as [7–12]

Seff =
1
2 ∑

x

[
V+

x −V−
x
]
− 1

4Nc
∑
x, j

MxMx+ ĵ +m0 ∑
x

Mx , (2.1)

Mx = χ̄xχx , V+
x = γeµ/ f (γ)χ̄xU0,xχx+0̂ , V−

x = γe−µ/ f (γ)χ̄x+0̂U†
0,xχx , (2.2)

where χx is the quark field and the mesonic composites are represented as Mx,V+
x , and V−

x . µ is
the quark chemical potential and f (γ) = a/aτ is the ratio of temporal and spatial physical lattice
spacing. We adopt a simple parameterization f (γ) = γ2 in SCL determined from the quantum
correction under the mean field approximation [8]. As a result, temperature can be written as
T = γ2/Nτ [8].

We apply the extended Hubbard-Stratonovich transformation [11, 12] to four-Fermi terms
MxMx+ ĵ in Eq. (2.1). The four-Fermi terms are semi-diagonal in the momentum representation,
and there exist positive ( f (k) = ∑d

j=1 cos k j > 0) and negative ( f (k)< 0) modes,

− 1
4Nc

∑
x, j

MxMx+ ĵ =− L3

4Nc
∑

k,τ, f (k)>0
f (k)(Mk,τM−k,τ −Mk̄,τM−k̄,τ) , (2.3)
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where Mx=(x,τ) = ∑k eik·xMk,τ , k̄ = k+ (π,π,π), and f (k̄) = − f (k). Bosonization of negative
modes involves with iεx (εx = (−1)x0+x1+x2+x3), and the effective action after the bosonization is
obtained as

SEHS
eff =

1
2 ∑

x

[
V+

x −V−
x
]
+∑

x
mxMx +

L3

4Nc
∑

k,τ, f (k)>0
f (k)

[
|σk,τ |2 + |πk,τ |2

]
, (2.4)

mx =m0 +
1

4Nc
∑

j

[
(σ + iεπ)x+ ĵ +(σ + iεπ)x− ĵ

]
, (2.5)

where σx = ∑k, f (k)>0 eik·xσk,τ and πx = ∑k, f (k)>0(−1)τeik·xπk,τ . It should be noted that k and −k
fields are related via the real field conditions, σ−k,τ = σ∗

k,τ and π−k,τ = π∗
k,τ . In this bosonization

procedure, we introduce auxiliary fields to preserve original O(2) symmetry [16, 17].
The partition function and the effective action are obtained after integrating over the Grass-

mann and temporal link (U0) variables as [7, 8],

ZAF =
∫

D [σk,τ ,πk,τ ] e−SAF
eff , (2.6)

SAF
eff = ∑

k,τ, f (k)>0

L3 f (k)
4Nc

[
|σk,τ |2 + |πk,τ |2

]
−∑

x
logR(x) , (2.7)

R(x) =XNτ (x)
3 −2XNτ (x)+2cosh(Ncµ/T ) , (2.8)

where D [σk,τ ,πk,τ ] = ∏k,τ, f (k)>0 dσk,τdσ∗
k,τdπk,τdπ∗

k,τ . XNτ (x) is calculated by using a recursion
formula as in Refs. [7, 8]. In the static case, we find XNτ = 2cosh(Nτ arcsinh (mx/γ)).

In order to take account of mesonic fluctuation effects, we integrate over mesonic auxiliary
fields (σk,τ ,πk,τ) by using the Monte Carlo method with the effective action SAF

eff . By virtue of the
milder sign problem than the standard LQCD, we can perform Monte Carlo simulations at both
finite T and µ . We use the the reweighting method at finite µ and T , and calculate observables.

3. Higher-order cumulant ratios with mesonic fluctuation effects for net-baryon
number

We shall now discuss higher-order cumulant ratios of the net-baryon number obtained in the
chiral limit (m0 → 0) on 43 ×4,63 ×4,63 ×6 and 83 ×8 lattices. The results except for the 83 ×8
lattice are reported in Ref. [17]. The normalized skewness Sσ and kurtosis κσ 2 are defined as

Sσ =
χ(3)

µ

χ(2)
µ

, κσ 2 =
χ(4)

µ

χ(2)
µ

, χ(n)
µ =

1
V T 3

∂ n logZ
∂ µ̂n , (3.1)

where µ̂ = Ncµ/T [18]. S, κ , and σ2 are skewness, kurtosis, and variance, respectively.
We first discuss the results at µ/T = 0.2. In the present framework, the tricritical point (TCP)

exists between µ/T = 0.8 and 1.0 in the strong coupling limit [16], and µ/T = 0.2 is away from
TCP. In Fig. 1, we show the normalized skewness (Sσ ) and kurtosis (κσ 2) at µ/T = 0.2 as func-
tions of T/Tc, where Tc ≃ 1.44 is the critical temperature at µ = 0 evaluated on a 84 lattice. The
skewness has one positive peak, whose height grows with increasing lattice size. The kurtosis also
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Figure 1: The cumulant ratios Sσ and κσ 2 on the µ/T = 0.2 line as functions of T/Tc(µ = 0).

has one positive peak. On larger lattices, we find a negative kurtosis region, which might originate
from the phase transition nature smeared by finite size effects [19]. The singular contribution of
the kurtosis may overcome the regular part of the kurtosis with increasing lattice size [4].

Next, let us examine the behavior of cumulants around TCP. In Fig. 2, we show the normalized
skewness and kurtosis divided by the spatial volume, Sσ/L3 and κσ 2/L3, at µ/T = 0.8. We find
significant non-monotonic behavior around the phase boundary. The skewness has one positive
peak and one negative valley, and the kurtosis has two positive peaks and one negative valley in
between. With increasing lattice size, the amplitudes of Sσ and κσ 2 increase, and the peaks and
valley become narrower. These features are consistent with the expectations from the O(4) scaling
analysis in the thermodynamic and chiral limits; Sσ diverges positively (negatively) toward the
phase transition temperature from below (above), and κσ 2 diverges positively at the phase transi-
tion temperature [4]. The negative region of κσ 2 presumably appears due to the smeared singular
part, as observed with finite quark mass in the thermodynamic limit [4]. While the smearing from
the finite mass and the finite size may be different, the present results imply that the finite size
masks the singular behavior [19] in a similar way to the finite mass.

4. Summary

We have studied the cumulant ratios, Sσ and κσ 2, of the net-baryon number at finite T and
µ on the lattice in the strong coupling and chiral limits by using the auxiliary field Monte Carlo
method. We find non-monotonic behavior of Sσ and κσ 2 at around the phase boundary near the
expected TCP.

The normalized skewness Sσ has one positive peak at µ/T = 0.2 and has one positive and
one negative peaks at µ/T = 0.8. The peak width at µ/T = 0.8 shrinks with increasing lattice
size. The normalized kurtosis κσ 2 has one positive peak and one negative peak on larger lattices
at µ/T = 0.2, and two positive peaks and one negative valley at µ/T = 0.8. The valley width
at µ/T = 0.8 shrinks with larger lattice size, then we could expect that the normalized kurtosis
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Figure 2: The cumulant ratios Sσ and κσ 2 divided by the space volume on the µ/T = 0.8 line as functions
of T/Tc(µ = 0).

should positively diverge in the thermodynamic and chiral limits as observed in the to O(4) scaling
analysis [4].

Lattice-size dependence on Sσ and κσ 2 implies that the finite size masks the singular behavior
of these cumulant ratios as in the finite mass cases [19]. While the finite size and finite mass effects
are different, we may conclude that the negative region of κσ 2 appears due to the finite size effect
in the chiral limit [4, 19].
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