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1. Introduction – “Sign problem”

The objective of our project is to clarify the QCD phase structure, and especially to determine
the QCD phase transition line. A well-know obstacle of this goal is “sign problem”, that is caused
by a complex determinant appearing in the path integral,

Z(µ,T ) = Tre−(H−µN̂)/T =
∫

DU (det∆(µ))Nf exp(−SG), (1.1)

where µ and T are the chemical potential and temperature, and SG and ∆ stand for the gluon action
and the fermion (quark) determinant with the number of flavors N f . We consider N f = 2 case in
this report.

The problem comes due to the relation,

(det∆(µ))∗ = det∆(−µ∗) (1.2)

which guarantees that det∆(µ) is real at µ = 0, but not for µ > 0. Monte Carlo simulations
generate configurations {U} in the path integral formula (1.1) with the probability proportional to
(det∆(µ))Nf exp(−SG). Thus when det∆(µ) is complex, we are in a dither.

There are several cases when det∆(µ) is real:

i. Color SU(2)

ii. Phase quench or the finite isospin

iii. Pure imaginary chemical potential

iv. Chiral chemical potential

The two color QCD (i) is a very good test bed for studying theoretical aspect of the finite
density theory and have been used since Ref.[1]. But, it is not suitable for predicting the phase
transition point quantitatively and for clarifying its nature.

The finite isospin simulations (ii) [2, 3, 4] 1 describe a slightly different world from QCD, and
they suffers a pion condensation at µ = mπ/2.

In this report, we discuss general features of the canonical approach (CA) and a relation be-
tween the winding number expansion and the hopping parameter expansion. Physical outcomes, its
comparison with the multi-parameter reweighting method, the moments of the baryon number and
an analysis of the high precision calculation are discussed by Ref.[5], [6], [7] and [8], respectively.

2. Several approaches

Since the quark determinant det∆(µ) is real when the chemical potential µ is pure imaginary,
i.e., µ2 <, one way to calculate Z(µ,T ) in Eq.(1.1) is to extrapolate results from µ2 < 0 to µ2 > 0
[9, 10]. This is a giant step for the finite density lattice QCD towards beating the sign problem yoke,
and yet of course it is limited to small chemical potential values because it is an extrapolation. See
Fig.12 in Ref.[11].

1In Refs.[3, 4], they call it iso-vector type chemical potential.
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Another great step for the finite density lattice QCD was the multi-parameter reweighting
method[12], in which observables are calculated as

〈O〉 =
1

Z(µ)

∫
DU O det∆(µ,U)e−βSG

=
1

Z(µ)

∫
DU O

det∆(µ,U)
det∆(µ = 0,U)

e−(β−β0)SG det∆(µ = 0,U)e−β0SG

= 〈O det∆(µ,U)
det∆(µ = 0,U)

e−(β−β0)SG〉0/〈
det∆(µ,U)

det∆(µ = 0,U)
e−(β−β0)SG〉0 (2.1)

The Monte Carlo update is done at µ = 0 2, and therefore no sign problem occurs.
At first glance, there is no restriction of the regions of µ/T . But the reweighting factor,

det∆(µ,U)/det∆(0,U) is complex and fluctuate. In Fig.1, we show the scatter plots of (det∆(µ,U)/
det∆(µ = 0,U))2, namely the reweighting factor appearing in Eq.(2.1)[13]. We see that they fluc-
tuate in the complex plane, and the fluctuation increases as µ becomes large, that makes the simu-
lation impossible. See Fig.4 in Ref.[13] for more details.

3. Canonical approaches
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Figure 1: Scatter plots of the
fermion reweighting factor, R =
(det∆(µ ,U)/det∆(0,U))N f , at β = 1.8
and 1.9[13].

The grand partition function Z(µ,T ) and the
canonical partition functions Zn are related as

Z(µ,T ) = Tre−(H−µN̂)/T =
+Nmax

∑
n=−Nmax

〈n|e−H/T |n〉eµn/T

=
+Nmax

∑
n=−Nmax

Zn(T )ξ n, (3.1)

where ξ = exp(µ/T ) is fugacity, and

Zn = 〈n|exp(−H/T )|n〉. (3.2)

Here we assume that the number operator N̂ com-
mutes with H, that is, N̂ is a conserved quantity. N̂ can be any conserved number operators, such
as baryon, charge and strangeness.

One way to calculate the canonical partition functions, Zn, is the Fourier transformation of the
grand partition function at pure imaginary chemical potential3[15],

Zn =
∫ +π

−π

dθ
2π

einθ Z(θ ≡ µI

T
), (3.3)

where µI is pure imaginary chemical potential. The grand partition function, Z, is evaluated at the
pure imaginary chemical potential, and therefore there is no sign problem. This is an appealing
idea and several trials have been done [16, 17, 18, 19, 20, 21, 22, 23]. But, still we are far from the

2One can update also at a pure imaginary chemical potential values instead of µ = 0.
3Another way is to employ the reduction formula[14]; In Ref.[13], explicit form of the fugacity expansion from the

reduction formula was discussed.
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final goal; this is because the canonical partition functions fluctuate in the complex plane during
the Monte Carlo update process. We will show the problem later.

If we can calculate the canonical partition functions, Zn, then Eq.3.1 allows us to calculate any
quantity at the real chemical potential, i.e., the real finite density region.

From Eq.(3.1), we can evaluate also the grand canonical partition function at the complex
fugacity plane. Zeros of Z(ξ ) are called Lee-Yang zeros[24]. In Fig.2, we show a result of Lee-
Yang zero obtained by using this formula.

3.1 Hopping parameter expansion → Winding number expansion
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Figure 2: Nmax dependence (“Volume” depen-
dence) of Lee-Yang zero distribution. Lattice
size is 123 × 4, β = 1.5 and κ = 0.1310. The
Lee-Yang zeros are calculated from Z(µ ,T ) =
∑+Nmax

n=−Nmax
Znξ n.

In order to see whether CA will beat the
sign problem or it is an empty dream, we must
study its advantage and drawback; especially if
we can improve the disadvantage aspects. For
this purpose, we investigate a lattice QCD on a
small lattice with the hopping parameter expan-
sion.

We start from

det∆ = exp(Trlog∆) = exp(Trlog(I −κQ)),
(3.4)

Tr log(I −κQ) = −∑
m

κm

m
TrQm

=
+nMax

∑
n=−nMax

Wn exp(µn/T ), (3.5)

here n is called “Winding number”. Our first task is to calculate Wn; Let us examine the inside of
Eq.(3.5).

TrQm = ∑
a,α,x

〈a,α,x|Qm|a,α,x〉, (3.6)

where the trace is taken over the color (c), the spinor (α) and the coordinate (x).

Qm|c,α,x〉 =
(
CloverTerm+Qi + e+µaQ+ + e−µaQ−)m |c,α,x〉 =

+m

∑
k=−m

e+kµaX(k)(m), (3.7)

where a is the lattice spacing. Here, X(k) stands for a state vector starting from (c,α,x) and ending
at k advanced point along the t-direction, where k is positive or negative. See the left panel of Fig.3.
Then,

〈c,α,x|Qm|c,α,x〉 = 〈c,α,x|∑
k

e+kµaX(k)(m). (3.8)

At the last stage, we pick up the coefficient of exp(µn/T ), i.e., Wn in Eq.3.5. We describe the
process in Algorithm 1.

Now we can calculate the canonical partition functions, Zn, via Fourier transformation Eq.(3.3).
We observed here numerical instability due to the cancellation of significant digits[8]. We circum-
vent this by using a multi-precision calculation [25]; we adopt 100 to 200 significant accuracy.
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A difficulty of CA is that Zn become very small when n goes to large, and are fragile against
fluctuation.

3.2 Dark side of the canonical approach

Using the method, we can calculate the canonical partition functions, Zn. Roberge and Weiss
pointed out that QCD has the following symmetry [26],

Z(
µ
T

+ i
2π
Nc

k) = Z(
µ
T

) (3.9)

For Nc = 3, using this periodicity, we can write

Zn =
∫ +π

−π

dθ
2π

einθ Z(θ) =
∫ +π

−π

dθ
2π

einθ Z(θ)+Z(θ + 2π
3 )+Z(θ + 4π

3 )
3

(3.10)

By setting θ ′ = θ + 2π
3 , the second term in Eq.(3.10) is

∫ +π

−π

dθ
2π

einθ Z(θ +
2π
3

) =
∫ +π+ 2π

3

−π+ 2π
3

dθ ′

2π
ein(θ ′− 2π

3 )Z(θ ′) =
∫ +π

−π

dθ ′

2π
einθ ′

ω2nZ(θ ′) (3.11)

where ω ≡ ei 2π
3 , ω2 = ei 4π

3 = e−i 2π
3 . The third term becomes

∫ +π
−π

dθ ′

2π einθ ′ωnZ(θ ′). Then

Zn =
∫ dθ

2π
1+ωn +ω2n

3
einθ Z(θ), (3.12)

and consequently,
Zn = 0, for n ̸= 3m. (3.13)

We have observed that This “triality” is not satisfied in our simulations. Moreover, Z3m should be
real positive, but this condition is also violated.

t=k

n=+1

n=+1 n=-1

Figure 3: Winding number expansion.

4. Concluding remarks

We can beat the “sign problem”, in the sense that the complex determinant fades away from
the front stage, and newly appearing oscillation of Fourier transformation is under control. And yet
now we must fight against an obstacle:

• Triality is not satisfied.
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Algorithm 1 Winding Numbers via Hopping Parameter Expansion
for (x,y,z, t,C,α)= (1,1,1,1,1,1) to (Nx,Ny,Nz,Nt ,Nc,4) do

for k= −kMax to +kMax do
Z(k) = 0

end for
for k= +kMax to +kMax do

X⃗ (k) = 0⃗
end for
X (0)(x,y,z, t) = 1
mMax = kMax−1
for m=1 to mMax do

kRange = m
for k=-kRange to +kRange do

workS = κ ∗ (Q1 +Q2 +Q3)∗ X⃗ (k)

workT = κ ∗ (Q(+)
4 ∗ X⃗ (k−1) +Q(−)

4 ∗ X⃗ (k+1))
Y⃗ (k) = workS +workT

end for
for k=-kRange to +kRange do

Z(k) = Z(k) +Y (k)(x,y,z, t,C,α)/m
end for
for k= −kMax to +kMax do

X⃗ (k) = Y⃗ (k)

end for
end for
for k= −(kMax−1) to +(kMax−1) do

if mod(k,Nt) ̸= 0 then
Wn(k/Nt) = −Z(k)

end if
end for

end for

• Canonical partition functions, Zn are not real positive.

This strongly suggests that our Monte Carlo update does not sweep all the configuration space, i.e.,
the overlap problem.

CA avoid the “sign problem” explicitly. It has advantages of having physically clear meaning,
and being able to study not only real chemical potential regions, but also complex chemical poten-
tial world. But we should still fight the overlap problem. The triality and real positive Zn are good
indicators for that.
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