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1. Introduction

SU(3) gauge theory with many flavors is a very good candidate for a walking technicolor
model. The LatKMI collaboration has been systematically investigating the SU(3) gauge theory
with N f fundamental fermions with N f = (0), 4, 8, 12, and 16 using a common setup of the lattice
action. We utilize the Highly improved staggered quark (HISQ) action with tree-level Symanzik
gauge action (HISQ/tree). Our previous results suggested that N f = 8 QCD could have a walking
behavior [1]. Similar results were also given in [2]. More interestingly, the flavor-singlet scalar
mass is found to be as light as the Nambu-Goldstone (NG) pion (π) in N f = 8 QCD [3]. In this
proceeding, we present our updated results of the scaling properties of various hadron spectra,
including the pseudoscalar mass (Mπ ), decay constant (Fπ ), vector mass (Mρ ), and nucleon mass
(MN) in comparison with N f = 12 QCD. We also present a new result of the measurement of the
flavor-singlet pseudoscalar (η ′) mass for the first time in the many flavor QCD. The mass of η ′

meson is interesting, since the fermion loop contribution, which would naturally enhance as N f

increases, plays an essential role. Using a topological charge density operator and the gradient flow
we can obtain a good signal for the η ′ meson two-point function. All the updated results shown
here are preliminary.

2. Simulation setup and simple analysis

We have been generating configurations at β = 3.8 with lattice volumes (L,T ) = (18,24),
(24,32), (30,40), (36,48) and (42,56), for various fermion masses. Compared to our previous
results in Ref. [1], we have added new simulation points in the smaller mass region of m f = 0.012
and 0.015 on L= 42 with 2,200 and 4,760 HMC trajectories, and accumulated more configurations
at smaller masses on larger volumes. We have now typically ten times many trajectories than the
previous data for smaller mass region. The details of simulation parameters and updated results
can be found in Ref. [4], where we should mention that some spectrum data have been changed
at the 1σ level from the previous results. This is due to the fact that there are unexpectedly long
auto correlation lengths for HMC history, which appeared also in the topological history presented
in Ref. [5]. In the present analysis, taking a longer HMC trajectory with smaller fermion masses,
we obtain more reliable results, which enable us to deeply investigate the scaling behavior of the
various hadron spectra. As shown later, this improvement has affected the numerical result for the
finite-size hyperscaling analysis, while the statement that there exists an (approximate) conformal
behavior is unchanged.

As a simple analysis, we study dimension-less ratios of the physical quantities as Mρ/Mπ ,
Fπ/Mπ , and MN/Mπ as a function of Mπ shown in Fig. 1. Those ratios are increasing towards the
chiral limit. A similar tendency can be seen in our N f = 4 data, and is clearly different from the
one in N f = 12, where we find those ratios have mild Mπ dependence, and become a constant in
the small-Mπ region. As for the ratio analysis, our updated result is consistent with the previous
result.

3. Hyperscaling analysis

Although the ratio analysis shows a consistent behavior with the theory having broken chiral
symmetry, we can still expect some remnant of the conformal symmetry, if the theory is near the
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Figure 1: Fπ/Mπ v.s. Mπ (Left), Mρ/Mπ v.s. Mπ (Center), and MN/Mπ v.s. Mπ (Right) for N f = 8.

edge of the conformal window. In fact, in our previous data we have found that each quantity has
an approximate hyperscaling in the intermediate mass region. As shown below, using the updated
result with smaller fermion masses, it turns out that this scaling can be seen even at smaller fermion
masses. This is one major change in our updated result.

We carry out an individual finite-size hyperscaling fit using a naive function,

ξh = c0 + c1x, (3.1)

where ξh = LMh, h = π,ρ, and N, or ξF = LFπ , and x = Lm1/(1+γ)
f . In the finite-size hyperscaling

analysis we only use the updated data that covers a simulation parameter region with 0.012 ≤ m f ≤
0.08 and 24 ≤ L ≤ 42 1. The fit results are shown in Fig. 2 and Table 1. Unlike the previous result
(c.f. Table V in Ref. [1]), the naive fit works even in a region of smaller masses except for Mπ . The
resulting value of γ is O(1), but it is not universal.
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Figure 2: Individual finite-size hyperscaling fit for
each ξh.

γ χ2/dof
Fπ 1.010(6) 1.7
Mπ 0.631(3) 19.2
Mρ 0.904(18) 1.7
MN 0.838(20) 3.0

Table 1: Result of the naive finite-size hyperscaling
fits.

From the mass-deformed conformal theory point of view, non-universality and a large χ2/dof
might be caused by corrections to hyperscaling. To test such a possibility, we carry out a finite-
size hyperscaling with mass corrections. Among various types of the mass corrections, we adopt a
renormalization group inspired correction term [6] as a benchmark test, which is

ξh

1+ c2mω = c0 + c1x. (3.2)

In this formula, there is another exponent ω in the correction term, whose theoretical origin comes
down to the critical exponent of the irrelevant operator g (gauge coupling) in the vicinity of the
infrared fixed point. As ω can not be analytically determined in the present analysis, we treat it as
a fit parameter. Then we carry out the simultaneous finite-size hyperscaling fit for the quantities

1A full analysis including the previous data with heavier mass region will be presented in Ref. [4].
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of Fπ , Mπ , Mρ , and MN with common values of γ and ω . As a comparison we also perform a
simultaneous fit without a correction (Eq. 3.1). Both results are shown in Fig. 3, where the vertical
axis y in the x-y plane means,

y =

{
(ξh−c0)/c1

x (naive fit),
(ξh/(1+c2mω )−c0)/c1

x (with correction).
(3.3)

The data are distributed around the fit line, i.e. y = 1, where the fitted data with mass correction
are closer to the fit line than the naive one. The fit results are tabulated in Table 2. As a result, the
mass correction term improves the fit accuracy and we obtain a reasonable χ2/dof and γ ∼ 1.

However, we should note that in this approach there is no systematic way to incorporate finite
mass and volume corrections to the universal hyperscaling relation, and the value of γ depends
on the model in general. In addition, the contribution of the correction term for Mπ is found to
be comparable to that of the naive hyperscaling term in the simulation mass region. Note that c2

differs depending on the quantity. In this situation, it is not immediately obvious whether each
data actually shows a universal scaling towards the chiral limit. (As shown later, there is a clear
difference in the correction between N f = 8 and 12.) Even if this is the case, γ(Mπ) ∼ 1 is also
consistent with the chiral broken phase, since it coincides with the leading order of m f dependence
of Mπ in the chiral perturbation theory (ChPT) formula 2. In either case whether N f = 8 QCD is
in the conformal phase with γ ∼ 1 or in the chirally broken phase, we can expect that Mπ behaves
like Mπ ∼ m1/2

f as approaching the chiral limit.
In the next section, in order to see such a scaling behavior, we study mass (scale) dependence

of γ for each quantity in detail.

γ ω χ2/dof
naive fit 0.708(3) − 84.2

with correction 1.02(4) 0.35(2) 2.3

Table 2: Fit result for simultaneous finite-size hyperscaling with and without a mass correction term.
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Figure 3: Simultaneous finite-size hyperscaling fit for the naive function (Left), and with correction (Right).

4. Prospect towards the chiral limit

To see a scaling property in detail, we need to systematically study the fermion mass depen-
dence of γ . We consider a window for the fermion mass parameter which corresponds to a range

2In fact, a ChPT-like fit also works in our data, where we can obtain a tiny non-zero Fπ in the chiral limit, and the
higher order term for M2

π is required to fit the data [4].
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for three sequential fermion masses, and slide it from [mmin
f ,mmax

f ] = [0.012,0.02] to [0.07,0.1]. We
then perform a fit for each window. The data on the largest volume are used for each mass, so that
we use the naive hyperscaling function Mh ∝ m1/(1+γ)

f . An effective mass anomalous dimension
(denoted γeff(m f )) is calculated as a fit result for each window.

The result for γeff(m f ) is plotted in the left panel of Fig. 4, where the x-axis means the central
value of the fit range. We find that the value of γeff for Mπ increases and it looks like approaching
∼ 1. While our data are far away from the chiral limit, this tendency could be a promising signal
for the chirally broken phase. In fact, this result is in sharp contrast to the N f = 12 result, which is
shown in the right panel of Fig. 4. In N f = 12, γeff for Mπ never increases towards the chiral limit.
Furthermore, γeff from various quantities tend to become universal in a range of small mass within
our statistical accuracy, indicating that the system is in the scaling region. This is consistent with
the conformal nature for N f = 12 QCD. A large correction to Mπ for N f = 8 found in the previous
section could be understood since it is not in the scaling region, while the correction for N f = 12
would become important only when the data outside of the scaling region were included. Although
it is obvious within the current data we can not discriminate both possibilities between the strongly
coupled conformal theory (γ ∼ 1) and the chiral broken theory with approximate hyperscaling, the
tendency of γeff found in N f = 8 is indicative of a walking gauge theory.
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Figure 4: γeff(m f ) for N f = 8 (Left), and for N f = 12 (Right).

4.1 Effective γ from Dirac eigenvalues

Another way to calculate an effective γ is to use the spectrum of the Dirac eigenvalues. From
the density of eigenvalues, ρ(λ ), with Dirac eigenvalue λ , the scaling law of ρ(λ ) is given as

ρ(λ ) ∝ λ
3−γ
1+γ . Thus we can obtain a scale-dependent mass anomalous dimension [7]. We define an

effective anomalous dimension from Dirac eigenvalues as

3− γeff(λ )
1+ γeff(λ )

=
lnρ(λ +∆)− lnρ(λ )

ln(λ +∆)− lnλ
. (4.1)

We show the result for the smallest two fermion masses with ∆ = 0.004 in Fig. 5. We find γeff(λ ∼
0) ∼ 3, which is consistent with a non-zero chiral condensate suffering from a non-zero fermion
mass effect. Looking at small λ (> m f ), we estimate 0.5 < γeff(λ )≤ 1 for 0.03 ≤ λ ≤ 0.1. This is
roughly consistent with the one obtained from hadron spectra, but it requires a more careful study.

5. Flavor-singlet pseudoscalar mass

Here we would like to investigate the flavor-singlet pseudoscalar (η ′). The η ′ meson would be
a NG-boson of the axial U(1) symmetry of QCD, while its mass is larger compared to the flavor
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Figure 5: γeff(λ ) from Dirac eigenvalue spectrum for N f = 8.

non-singlet pseudoscalar (π), which can be attributed to the axial U(1) anomaly, where the N f

factor manifests in the anomaly contribution. The axial anomaly relation tells that the topology
of QCD can also play an important role in the η ′ meson mass, so that an investigation of the N f

dependence of the mass is important to understand QCD. We use a topological charge density
operator q(x) to calculate the two-point correlation function of the η ′ meson. We use the gradient
flow method [8] to improve the statistical accuracy, which was already adopted in the measurement
of the topological charge and susceptibility [5]. We measure the correlation function ⟨q(x)q(y)⟩ for
various flow time t. As a preliminary study we calculate the correlation function at m f = 0.02 on
L = 36 in N f = 8 3. The result for the correlation function is shown in the left panel of Fig. 6, where
r = |x− y|. The mass of the η ′ meson (Mη ′) is obtained by a fit with ⟨q(x)q(y)⟩ = cK1(Mη ′r)/r,
where K1(x) is a modified Bessel function and c is a constant. We estimate an effective mass from a
fit with range [r,r+0.5] using an asymptotic form of the above function. The result of the effective
mass is shown in the middle panel of Fig. 6. We find that a better plateau is obtained for larger
flow time. To see flow time dependence of the mass, we carry out the fit with fixed fit range of
r = 6.5− 10. The result is shown in the right panel of Fig. 6, where we find a stable region for
t ≤ 1, and in this region a signal becomes better as t increases. We quote a mass as Mη ′ = 1.00(6)
at t = 0.6 for m f = 0.02. We obtain a ratio Mη ′/Mρ = 3.1(2). This result is much larger than the
real-life QCD. Our result suggests a heavy η ′ meson, which might be due to a large fermion loop
effect in many-flavor QCD.
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Figure 6: (Left) Two point correlator for η ′ meson obtained from a topological charge density operator for
N f = 8. (Center) The effective mass for the η ′ meson. (Right) Flow time dependence of the η ′ meson mass.

3Similar analyses have been done in quenched QCD [9] and 2+1 flavor QCD [10].
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6. Summary

We have studied the scaling properties of various hadron spectra in N f = 8 QCD. We found
that the ratios of the hadron spectra show a similar behavior to the N f = 4 QCD, however, each
quantity shows hyperscaling except for Mπ , where Mπ obviously is outside a scaling region either
in the conformal phase or in the chirally broken phase. We also found that a finite-size hyperscaling
fit with universal γ can work by adding a mass correction term. The fit result gives γ ∼ 1 and a
reasonable χ2/dof. Further detailed analysis has been performed by studying an effective γ for
each hadron spectrum, which turns out to be useful to see a tendency towards the chiral limit. We
found a qualitative difference between N f = 8 and 12; in N f = 8 γeff for Mπ is increasing and seems
to be approaching ∼ 1 towards the chiral limit, while in N f = 12 a universal value of γeff ∼ 0.4
can be obtained in a smaller fermion mass region. This result might be indicative of N f = 8 QCD
being in the chirally broken phase. As a result, N f = 8 QCD still possesses two possibilities of
the strongly coupled conformal theory (γ ∼ 1) and chirally broken theory with walking behavior.
Thus N f = 8 QCD is a good candidate for the walking technicolor model. We have also provided
a calculation of the flavor-singlet pseudoscalar mass in N f = 8 QCD. Using a gluonic operator and
the gradient flow, we have obtained a good signal of the η ′ mass for the first time in the many flavor
QCD. Our result suggests a heavy η ′ compared to real-life QCD.
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