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1. Introduction

We continue our study of an SU(3) gauge theory with N f = 2 massless Dirac fermions in the
sextet representation [1, 2, 3, 4, 5, 6]. The primary motivation for all of our studies is that this model
may serve as the strongly coupled sector of electroweak symmetry breaking beyond the Standard
Model. In particular, the currently available numerical evidence is consistent with spontaneous
chiral symmetry breaking, generating exactly three Goldstone bosons before being eaten by three
of the electroweak gauge bosons and with a light scalar particle to be interpreted as a composite
Higgs boson.

In this contribution we address the renormalization group flow, more precisely its discrete
variant, the step scaling function. A renormalized coupling is defined in a finite volume gradient
flow scheme and the step scaling function is calculated at several lattice volume pairs. These are
then extrapolated to the continuum. The result is a continuum discrete β -function corresponding
to a finite change in the running scale L→ sL, in our case s = 3/2, obtained from simulations
on 84 → 124, 124 → 184, 164 → 244, 204 → 304 and 244 → 364. We pay particular attention
to quantifying the size of systematic uncertainties. In our setup the only source of these is the
continuum extrapolation since we use rooted staggered fermions and the mass can be set to zero
exactly unlike in the Wilson fermion formulation.

Since the result for the β -function is in the continuum it should be independent of the dis-
cretization used as long as the same renormalization prescription – or scheme – is used for the
coupling. Even though the scheme used in [7] is different from ours we do comment on the results
found there.

2. Gradient flow scheme
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Figure 1: Measured discrete β -function in the SSC (left) and WSC (right) discretizations; the data corre-
spond to five sets of matched lattice volumes L→ sL with s = 3/2.

In our work we use the renormalization prescription proposed in [8, 9] for the renormalized
coupling. This scheme is based on the gradient flow [10, 11, 12, 13, 14, 15, 16], is defined in finite
4-volume with periodic gauge fields and fermions which are anti-periodic in all 4 directions. More
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precisely,

g2
c =

128π2〈t2E(t)〉
3(N2−1)(1+δ (c))

, E(t) =−1
2

TrFµνFµν(t) (2.1)

where N = 3 for SU(3), c =
√

8t/L is a constant that specifies the scheme and the factor δ (c) can
be found in [8, 9]. In the present study we fix c = 7/20.
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Figure 2: Example of our continuum limit procedure for g2 = 4.0 for s = 3/2 and c = 7/20. Right: the
AIC-weighted histogram in the SSC setup. Left: two representative examples of the continuum extrapola-
tions in the SSC setup: one 5-point continuum extrapolation and one 4-point continuum extrapolation. A
representative example of 4-point continuum extrapolations in the WSC is also shown. In all cases the legend
shows the χ2/do f of the fits. See text for more details.

So far the definition was given in the continuum and there are many ways to discretize it on
the lattice [17, 18, 19, 20]. We use both Wilson plaquette and tree level improved Symanzik gauge
action for the flow, tree level improved Symanzik gauge action for generating the configurations
and the clover type discretization of Fµν for measuring the observable E. These correspond to the
WSC and SSC labels in the terminology of [17, 18], respectively.

The fermions are discretized using the rooted staggered formalism with 4 steps of stout-
improvement [10] and stout parameter ρ = 0.12. The bare mass is set to zero. The applicability of
the rooting procedure in our finite volume setup at zero bare mass has been shown to hold in [21]
to which we refer for more details.

The discrete β -function we seek to calculate is (g2(sL)−g2(L))/ log(s2) as a function of the
renormalized g2(L). Clearly, in a lattice calculation with finite resources only a finite g2-range can
be covered for several reasons.

3. Results

In figure 1 we show the measured discrete β -function values in both lattice discretizations
SSC and WSC. There is a qualitative difference between the two cases at the finite lattice volumes
shown: in the WSC setup one observes a zero of the β -function at some finite lattice volumes,
whereas in the SSC setup it stays positive for all lattice volumes. What happens at finite lattice
volumes is of course irrelevant, the only relevant question is how the continuum extrapolated result
behaves.
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Figure 3: Continuum extrapolated discrete β -function for s = 3/2 and c = 7/20 using the SSC setup.

The continuum extrapolation may be performed in the following manner, for more details see
[21]. On each finite volume L/a the dependence of g2(β ) on the bare coupling β is parametrized by
polynomials which will be used to interpolate to arbitrary β values. A Kolmogorov-Smirnov test is
applied to various polynomial orders (3,4,5 on L/a = 8,12,16,18,24 and 3,4 on L/a = 20,30,36)
and only those combinations are deemed allowed which lead to at least a 30% Kolmogorov-
Smirnov probability. All such allowed combinations are then used to obtain continuum results
at each g2, assuming corrections are linear in a2/L2. The various continuum results, corresponding
to different allowed combinations of interpolations, are then binned into AIC-weighted [22, 23, 24]
histograms and the width of these histograms will be the estimate of the systematic uncertainty
[25, 26]. The statistical uncertainty on the measured points of course lead to a statistical uncer-
tainty on the interpolated polynomials which in turn lead to a statistical uncertainty on the final
result. The obtained statistical and systematic uncertainties are then added in quadrature. Figure 2
shows an example of our procedure at g2 = 4.0.

It was observed in [21] that the SSC discretization scales better than the WSC variant hence in
the final result, figure 3, we show only the result corresponding to SSC. Both results however agree
within errors.

Clearly, the continuum β -function is monotonically increasing without a fixed point in the
studied range 0 < g2 < 6.5. We can of course not make any statement on the behavior for larger
couplings than our explored range, i.e. for g2 > 6.5. However, in the MS scheme the 3-loop
and 4-loop β -functions have a fixed point at g2 = 6.28 and g2 = 5.73, respectively and both are
within our available range. Some earlier lattice results [27, 28, 29] did in fact report consistency
with these perturbative results and hence consistency with an infrared fixed point. The Schwinger-
Dyson resummed perturbation theory is however consistent with our findings [30, 31], namely that
approximation also predicts non-conformal behavior in the infrared.

4. Comment on 1507.08260

In a recent work [7] the discrete β -function was computed for the same model, SU(3) with
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N f = 2 flavors of Dirac fermions in the sextet representation. The continuum scheme used is
similar, but not identical, to the one we used, despite the claim in [7] that they are identical. In
particular the coupling was defined from the gradient flow with c = 7/20 and s = 3/2 for the step
and the gauge fields were periodic, just like in our work. However, the fermions were only anti-
periodic in one direction and periodic in the rest, whereas in our work the fermions are anti-periodic
in all four directions.

Since the continuum schemes are not the same, quantitative agreement is not expected in
the continuum extrapolated results in general. In the perturbative region, for small g2, agreement
is nevertheless expected since the β -function in both schemes should follow the universal 1-loop
expression. The only expectation beyond the perturbative region is that if one of the schemes shows
a fixed point then the other scheme should show a fixed point as well.

Nonetheless a quantitative comparison was made in [7] between the two results and a more
than 3σ difference was noted for larger couplings at around g2 ' 5.0. Let us reiterate, at larger
coupling a quantitative comparison between the two continuum results is meaningless since the
two continuum schemes are not the same. The fact that different discretizations were used in the
two works (in [7] Wilson fermions were used) is irrelevant since the continuum limit was taken in
both. Note also that in earlier summaries [27, 28, 29] of the same work consistency with an infrared
fixed point was reported.

Nevertheless it should be noted that the largest volume used in [7] was 244 (quoted results on
284 were not used in the continuum extrapolation) and the smallest was 124. These corresponded to
the steps 124→ 184, 144→ 214 and 164→ 244. In order to understand the effect of having smaller
volumes and only 3 pairs, we repeated our continuum extrapolations using the steps 124 → 184,
164→ 244, 204→ 304 only. The procedure for the continuum extrapolation and estimation of the
systematic uncertainties is the same as in the presented results in the previous section using all
of our volumes. First the Kolmogorov-Smirnov test is applied to the interpolations on the subset
of volumes we use this time, then those which pass the Kolmogorov-Smirnov test are used for
many different continuum extrapolations and the results are then binned into an AIC-weighted
histogram. This procedure is repeated for both the WSC and SSC discretizations. The obtained
continuum result is shown in figure 4.

Note that the WSC and SSC results agree within errors but the discrete β -function in the con-
tinuum is lower than our more reliable result in figure 3 which used the full set of volumes; the
extrapolation excluding the largest volume is closer to the result in [7]. Note also that in our lim-
ited analysis using only 124, . . . ,304 we still have access to a fine lattice spacing that is missing in
[7], namely 204→ 304.

It is important to observe that a major difference between the two works is that while in our
formulation we can set the bare fermion mass to zero, in the Wilson fermion formulation tuning
is required. Table 1 in [7] shows the estimated κc values and the corresponding mc values. The
difference between mc and zero is in some cases 2, 3, 4 even 13 σ and more. Even though not
precisely tuned mc might be less relevant for larger β i.e. smaller physical volume which produces
a larger gap in the Dirac spectrum, one does observe 2 - 13 σ deviations from zero at the small β

values as well. The systematic uncertainty related to having not exactly massless fermions was not
accounted for in [7].

Hence we conclude that the most likely reason for a relatively low β -function in [7] is two-
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Figure 4: Our attempt to mimick the setup of [7]. Only a subset of volumes are used, 124→ 184, 164→ 244,
204→ 304, for the continuum extrapolation.

fold: one, the lattice volumes used were too small i.e. too large lattice spacings were used for the
continuum limit, and two, the systematic uncertainties were underestimated. The most probable
source of systematics is the tuning of the critical mass.

5. Conclusion and outlook

We have presented recent results on the running coupling of SU(3) gauge theory with N f = 2
flavors of massless Dirac fermions in the sextet representation. The goal is to study the model from
as many angles as possible and to see whether the physics conclusions from the various approaches
come together to form a coherent conclusion about the infrared dynamics of the model or not.
This is important because the model is clearly quite different from QCD and is more difficult to
study in the continuum limit in particular. Our previous results were consistent with spontaneous
chiral symmetry breaking which is also consistent with the present study at least up to the maximal
coupling g2 ' 6.5 accessible to our numerical simulations.
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