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We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) the-
ory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the
Standard Model as a low energy parameterisation of a more fundamental theory. In models of dy-
namical electroweak symmetry breaking these operators, at an effective level, are used to endow
the Standard Model fermions with masses. Furthermore these operators, when sufficiently strong,
can drastically modify the fundamental composite dynamics by, for example, turning a strongly
coupled infrared conformal theory into a (near) conformal one with desirable features for model
building. As first step, we study spontaneous chiral symmetry breaking for the lattice version of
the NJL model.
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1. Introduction

Despite the apparent Standard Model-like nature of the Higgs sector, it might still conceal,
in plain sight, a more fundamental composite nature [1]. In fact, it has been recently shown that
gauge-Yukawa theories, similar to the Standard Model, even if perturbative for some energy range
can still abide compositeness conditions [1,2]. In this case the Higgs-like state at higher energies is
not a propagating degree of freedom and effective four-fermion interactions appear, and the theory
becomes a gauged NJL theory.

Traditional models of fundamental composite dynamics, of either Technicolor or composite
Goldstone Higgs, make also extensive use of four-fermion interactions. This is clear from a recent
attempt [3] to generate the top mass in a composite theory able to bridge between the Technicolor
and Composite Goldstone Higgs limit.

For these kind of models three types of four-fermion operators generally occur:

Leff =
a

Λ2
UV

(Ψ̄SMΨSM)2 +
b

Λ2
UV

Ψ̄SMΨSMΨ̄TCΨTC +
c

Λ2
UV

(Ψ̄TCΨTC)
2.

The first term, involving only Standard Model fermions, can be suppressed by the large cutoff scale
Λ2

UV . The other two may be enhanced by the dynamics of the Technicolor sector. The second term
provides the Standard Model fermion masses and the third one adds to the Technicolor dynamics.

According to Holdom’s insight [4], models of walking dynamics, possessing large mass anoma-
lous dimensions, can enhance the SM fermion mass-term operator dynamically. It was later recog-
nised [5] that an ideal way to achieve walking dynamics (iWalk) is to ask the third operator (i.e.
the one containing only the technifermions) to induce chiral symmetry breaking when added to an
otherwise conformal Technicolor dynamics [5, 6]. Our ultimate goal is therefore to investigate the
nonperturbative dynamics of the gauged NJL model. We investigate on the lattice the un-gauged
version, i.e. the pure Nambu Jona-Lasinio (NJL) model, with Wilson fermions and furthermore we
retain only the last four-fermion operator. This is the stepping stone for the gauged version. A sim-
ilar model has been previously studied with the goal of understanding the phase structure of Wilson
fermions [7–9]. Models with staggered fermions have been studied in previous works [10–14] and
chiral symmetry breaking has been observed.

It is worth noting that the model is only effective. It is not renormalizable and does not have
a continuum limit. Thus different lattice discretizations and the continuum are essentially separate
models, although they share fundamental properties. There is, however, a scaling region where
physical results depend only weakly on the lattice spacing a.

2. The Model

We study the NJL model with 2 flavors of fermions possessing 2 extra color degrees of free-
dom. In this case one can construct an NJL action that preserves the full chiral symmetry. Unfor-
tunately when representing the fermion fields with pseudofermions, the action must be rendered
quadratic using auxiliary fields and the fermion determinant becomes complex1. We will therefore

1It is possible to render the fermion determinant positive if the number of colors is even and there is no gauge
interaction [7–9]. The remedy is not applicable here since we plan to generalize the study to a gauged model.
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study a model that preserves only a U(1)×U(1) subgroup of the original SU(2)×SU(2) symmetry
group.

The model is defined by the continuum Lagrangian

L̃ = Ψ̄/∂Ψ+σΨ̄Ψ+πΨ̄iγ5τ3Ψ+
σ2 +π2

4γ2 (2.1)

〈σ〉= 2γ
2 〈

Ψ̄Ψ
〉
〈π〉= 2γ

2 〈
Ψ̄iγ5τ3Ψ

〉
. (2.2)

Using the Wilson discretization of the pseudofermion representation we have:

L = χ
†(M†M)−1

χ +
σ2 +π2

4γ2 (2.3)

M = /∂W +σ +πiγ5 (2.4)

The Wilson term breaks chiral symmetry and introduces additional explicit chiral symmetry
breaking terms in the Lagrangian. In a renormalizable model the only necessary correction, a mass
term, arises as a result of a divergence in the Wilson term [15]. It is manifestly of first order in
a. All other terms vanish at small a. In the model under question new terms may also arise with
powers of γ and diverge at small a.

Chiral symmetry is restored by a correction to the action such that the axial current
(
A3

µ

)
is

conserved:

∂µ

〈
A3

µ(x)O
〉
= 0

The correction may be found, for example, via the PCAC relation. With the action 2.3 we have

∂µ

〈
A3

µ(x)O
〉
=
〈
aX3(x)O

〉
, (2.5)

where aX3 is the variation of the Wilson term. This term includes the divergent contribution that is
cancelled by the fermion mass term. It is instructive write down it’s renormalisation, expanding to
the first few lowest order operators:

aX3(x) = aX̄3(x)+
cm (γ/a)

a
P3(x)+(ZA (γ/a)−1)∂µA3

µ(x) (2.6)

+acA,1 (γ/a)∂µ∂µP3(x)+a2cA,2 (γ/a)∂(µ∂ν∂ν)A
3
µ(x)

+a2cγ (γ/a)S0(x)P3(x)+ · · ·

where aX̄3(x) includes only vanishing contributions to the PCAC relation, P3 is the pseudoscalar
density and S0 is the scalar density. The second term on the right hand side has to be cancelled by
adding a mass term to the action and the third one is a multiplicative correction to the axial current.
The two terms on the second line can be seen as corrections to the axial current. The last term
includes the first new contribution to the action with an effect on chiral symmetry. It is related to
choosing the quadratic coupling of the auxiliary fields to be different.

Each coefficient in eq. 2.6 can be expanded in γ to reveal contributions divergent in a. This is a
natural consequence of the nonrenormalizable nature of the model. Any number of these terms may
be taken into account in the action and in the renormalization of lattice operators. For simplicity
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we study a model with only the mass correction. We include the cγ term only to study its effect.
The full Lagrangian is thus

L = χ
†(M†M)−1

χ +
σ2

4γ2 +
π2

4γ2 +δγ

(2.7)

M = /∂W +m0 +σ +πiγ5. (2.8)

In the following we refer to the physical mass as m=m0+cm/a and the correction as δ̄ = δγ +a2cγ .
The restoration of chiral symmetry implies that all the terms on the right hand side in equation 2.5
cancel.

At a given γ , when a is too small, the divergent contributions may become relevant. On the
other hand, when a is too large, the corrections arising with positive order of a will be significant.
Only the region in between will provide physically interesting results.

An additional complication arises because of the auxiliary field π(x). There are significant
disconnected contributions in the mesonic triplet channels. The disconnected part increases with γ ,
and is relevant for the pseudoscalar correlators.

The meson masses are measured from correlators of the type

CΓ(t0, t) =

〈
∑
x

Ψ̄(x, t0)Γτ
3
Ψ(x, t0)∑

y
Ψ̄(y, t)Γτ

3
Ψ(y, t)

〉
(2.9)

lim
t−t0→∞

CΓ(t0, t) = AΓemΓ(t0−t) (2.10)

For the vector meson mass (mρ ) it is sufficient to measure the correlator with Γ = γk and fitting it
to the exponential at large t − t0. This correlator does not suffer significantly from disconnected
contributions. We measure the pseudoscalar mass (mπ ) from the correlator with Γ= γ0γ5 and, when
possible, Γ = γ5 using the generalized eigenvalue method. We also measure the pseudoscalar mass
(mπ2) using the correlator

Cπ(t0, t) =
〈

∑
x

π(x, t0)π(y, t)
〉

(2.11)

This measurement is useful when the disconnected contribution is large. The correlator is noisy,
but can be evaluated without inverting the fermion matrix.

3. Numerical Results

First we study the correction δ̄ and its effect on chiral symmetry and the fermion mass. To this
end we simulate the model with a small coupling γ = 0.2a and several values of δγ . In all cases the
lattice size is 16×83. When δ̄ is nonzero, the chiral symmetry is not restored at zero fermion mass
m. We can therefore study the effect of the correction by separately finding the line where m = 0
and the chirally symmetric line.

To find the chirally symmetric line we measure the pion mass mπ and the divergence of the
axial current normalized by the pseudoscalar density

m̃ =
∑x,y ∂x0

〈
A3

µ(x0,x)A3
µ(0,y)

〉
∑x,y

〈
P3(x0,x)A3

µ(0,y)
〉 . (3.1)
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The restoration of chiral symmetry implies m̃ = 0.
To study the mass term we must define it without reference to the axial current. To determine

a zero mass value we use mσ = m0 + 〈σ〉. At small coupling this coincides with the fermion mass.
In general the expectation value 〈σ〉 is related to the chiral condensate (equation 2.2). At a finite
lattice size there is always a small but nonzero chiral condensate, which changes sign when the
fermion mass crosses zero. This is seen as a first order transition in mσ . A similar method was used
in meanfield theory in [16].
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Figure 1: Fermion and meson masses at small coupling.We have γ = 0.2a for several values of δγ . Upper
left: the bare propagator fermion mass. Upper right: m̃. Lower left: the pion mass. Lower right: the points
in the δγ and m0 plane where the each mass crosses zero.

The masses are shown in figure 1. We observe a jump in the mσ across zero when δγ ≤ 0. At
δγ > 0 we do not observe a jump. In each case we find mσ = 0 with a linear extrapolation using
points where |mσ |> 0.05. We find the chirally symmetric point with linear extrapolations of m̃ and
mπ using points where mπ > 0.1. The resulting values are shown in figure 2.

When δγ = 0 the jump in mσ and the restoration of chiral symmetry happen at the same bare
mass. This confirms the expectation that a2cγ is negligible at small γ . At δγ < 0 chiral symmetry
is restored at positive mσ . At δγ > 0 we do not observe a jump when mσ crosses zero, but chiral
symmetry is restored at a negatife value of negative mσ . In all cases a nonzero value for the
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correction produces a noticeable but relatively small difference between the two critical lines.
Having established the restoration of chiral symmetry at small coupling, we study its sponta-

neous breaking at large coupling. We run simulations at γ = 0.65a and 0.6a and δγ = 0. The lattice
size is again 16×83. We measure the pseudoscalar meson masses mπ and mπ2 and the vector meson
mass mρ . Chiral symmetry is restored when mπ = mπ2 = 0 and broken when mρ is different from
mπ and mπ2 .
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Figure 2: The pseudoscalar and vector meson masses at large coupling 0.65a (left) and 0.6a (right). We
also show the expectation value 〈π〉, which serves as the order parameter for the parity broken phase.

We show the masses of the pseudoscalar and the vector mesons in figure 2. We also show
the expectation value 〈π〉, the order parameter for the parity broken phase. At large mass the
disconnected contributions to the pseudoscalar correlators become problematic. It is clear, however,
that at small mass the chiral symmetry is broken. In both cases the mass of the vector state remains
finite through the transition to the parity broken phase, where as mπ and mπ2 approach zero at the
transition.

4. Conclusions

We presented a lattice study of an NJLmodel, via Wilson fermions. These studies are relevant
because four fermion interactions occur naturally in several extensions of the Standard Model.
They represent low energy parameterisations of a more fundamental theory. Additionally models
of dynamical electroweak symmetry breaking make extensive use of four-fermion operators to
endow the Standard Model fermions with masses. We investigated spontaneous chiral symmetry
breaking for the lattice version of the NJL model presented here.

One observes that disconnected contributions to the correlator of the pseudoscalar meson be-
come significant at large coupling. Evaluating the disconnected contribution requires significantly
more computational effort than evaluating the connected part. At relatively small mass and large
coupling the correlator of the auxiliary field π can be used instead.
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According to the expectations we have find evidence of spontaneous chiral symmetry breaking
at large coupling, γ = 0.65a and 0.6a. The results are compatible with previous studies and follows
meanfield results [7–9, 14]. Additional work is needed to cover the full phase space of the model
and to verify scaling and lattice size dependence. Once these analyses are performed it is then
natural to move to the full gauged model.
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