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1. Introduction

There are many possible models that solve the ‘problems’ associated with the Higgs sector of
the Standard Model. They typically come under the heading of either supersymmetry, technicolor
or extra dimensions, and until the LHC can provide a favoured direction, all avenues must be
explored. Here we study the properties of an extra-dimensional scenario known as Gauge-Higgs
Unification. Perturbatively, these class of models are centred around the Hosotani mechanism
[1], where the Aharonov-Bohm phase in the extra dimension plays the role of the Higgs. This
mechanism has been used in a variety of scenarios and more recently, for example, it has been used
in an SO(11) Grand Unification model [2]. Using the arena of lattice field theory, strides have been
made in exploring the non-perturbative properties of Gauge-Higgs Unification [3, 4, 5, 6, 7, 8].
In particular, a five-dimensional SU(2) model where the extra dimension is subject to an orbifold
geometry, has been shown to exhibit spontaneous symmetry breaking giving rise to massive gauge
bosons [4].

In these proceedings, we give an overview of the results presented in [7], namely, we discuss
the phase diagram and mass spectrum of a five-dimensional pure gauge SU(2) theory formulated
using an orbifold geometry on an anisotropic lattice. We concentrate on the region of the phase
diagram where the lattice spacing in the usual four dimensions, a4, is less than or equal to that
along the extra dimension, a5.

The theory is defined in the domain I = {nµ ,0 ≤ n5 ≤ N5} with volume T ×L3×N5 corre-
sponding to Figure 1. The bulk SU(2) gauge links are shown in blue. The gauge group is explicitly
broken from SU(2)→ U(1) at the fixed points of the orbifold and the corresponding links are
shown in red. The magenta links are known as ‘hybrid’ as they gauge transform like SU(2) at
one end and U(1) at the other. We perform our study using a five-dimensional anisotropic Wilson
action

Sorb
W =

β

2 ∑
nµ

[
1
γ

∑
µ<ν

w tr
{

1−Uµν(nµ)
}
+ γ ∑

µ

tr
{

1−Uµ5(nµ)
}]

, (1.1)

where w = 1/2 for plaquettes, Uµν , living at the fixed points of the orbifold and w = 1 otherwise
[3]. In the classical limit, the anisotropy parameter γ = a4/a5 and β = 4a4/g2

5, where g5 is the di-
mensionful continuum gauge coupling. In what follows, we will use an equivalent pair of couplings
β4 and β5 which are related to the couplings in equation (1.1) via

β4 =
β

γ
; β5 = βγ . (1.2)

For a more complete description of the theory and lattice set-up see [7].

2. Phase Diagram

Figure 2 shows the phase diagram of the theory for fixed extent of the extra dimension N5 = 4,
focused around the region γ ≤ 1. Within our explored parameter space, we find only first-order
phase transitions which are represented by the red and blue lines. We label the blue line as bulk-
driven since it is the bulk SU(2) links that drive the system into a change of phase, whereas we
label the red line as boundary-driven as it is the boundary U(1) links that drive the system into a
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Figure 1: A sketch of the orbifold lattice and the gauge links: boundary U(1) links are red, hybrid SU(2) links sticking
to the boundaries are magenta and bulk SU(2) links are blue.

change of phase. One important observation is that the phase structure determined here agrees on a
qualitative level with that determined via mean-field [9, 10]. Another important observation is that
it is reminiscent of the 4-D Abelian Higgs model for a Higgs of charge q = 2 [11, 12], which is the
theory that the orbifold reduces to in four dimensions.

In order to begin to label the phases within our theory, we firstly consider the expectation
value of the Polyakov loop along each direction; zero expectation values imply confining dynamics
whereas non-zero values indicate deconfined dynamics. Since we find the expectation value of the
Polyakov loop to be zero in all directions, we label the lower left phase of Figure 2 as confined.
We label the upper region as the Higgs phase since it exhibits deconfinement in all directions
and gives a non-zero mass of the Higgs and gauge boson. The third phase we label as hybrid
since it exhibits deconfined dynamics on the four-dimensional boundary hyperplanes and confining
dynamics elsewhere; this behaviour is strongly reminiscent of the layered phase described in [13].
In the rest of these proceedings, we will focus on the Higgs phase since it is the best candidate to
reproduce a Standard Model-like Higgs sector. For further discussion on the properties and features
of the other phases, see [7].

3. The Higgs Phase

We are interested in the properties of the Higgs phase since it is the region of the phase diagram
where we can determine a Higgs mass and observe spontaneous symmetry breaking giving rise to a
massive vector boson. We label this vector boson as the Z due to its similarity to with the Standard
Model Z boson. The spontaneous symmetry breaking is governed by the so-called stick symmetry
[14], and we refer the reader to [7] for a detailed explanation. In order to determine if these types
of theories can be candidate solutions to the problems surrounding the Higgs sector of the Standard
Model, we determine the low-lying mass spectrum within the Higgs (JPC = 0++) and Z boson
(JPC = 1−−) channels. The Standard Model has a ratio of Higgs to Z boson masses ρ ≈ 1.38 and in
order for Gauge-Higgs Unification scenarios to be phenomenologically viable, they should achieve
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Figure 2: The phase diagram for N5 = 4 in the region of the Higgs-hybrid phase transition. The points show the
location of a first-order phase transition. The red and blue lines represent the width of the corresponding hystereses,
while the dashed orange line represents γ = 1.

a similar value for a range of physically similar phase space parameters; an indication that this is
achievable in our current SU(2) model would encourage further explorations into larger models
that can account for all the degrees of freedom of the Standard Model. For example, an SU(3)
theory could reproduce the full Higgs sector as it would break to SU(2)×U(1) at the fixed points
of the orbifold.

3.1 Spectrum

We determine the low-lying spectrum in both the Higgs and Z boson channels by solving a
generalised eigenvalue problem with a large basis of interpolating operators as described in [7].
When the gauge couplings in the four-dimensional hyperplanes and along the extra dimension are
equal (i.e. along the dashed orange line in Figure 2), we find that the mass of the Z boson is
always heavier than that of the Higgs. However, as we lower the inverse coupling along the extra
dimension, β5, we find a tendency of this hierarchy to become more Standard Model-like.

Figure 3 shows a summary of our spectroscopic calculations for fixed N5 = 4 within the vicin-
ity of the Higgs-hybrid phase transition (blue line). We observe that once we keep the coupling
along the four-dimensional hyperplanes β4 > 2.02 and are close enough to the phase transition, the
Higgs mass is heavier than that of the Z. The value of β4 = 2.02 is no coincidence as it is the value
within this system for which the boundary U(1) links naturally deconfine; below that value a de-
coupled four-dimensional U(1) hyperplane would exhibit confined dynamics and above it exhibit
deconfined dynamics. Furthermore, we find that the theory achieves a Standard Model-like ratio
ρ ≡∼ 1.38 of Higgs to Z boson masses for a wide range of parameters, highlighted by the darkest
green shading in Figure 2.

The left panel of Figure 4 shows the dependence of the ratio ρ on the extent of the extra
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Figure 3: Summary of our spectroscopic calculations for γ < 1 and N5 = 4 close to the Higgs-hybrid phase transition.
The black points indicate the location of a spectroscopic calculation within the phase diagram. The green shading
indicates the ρ ≡ mH/mZ value obtained for a given calculation. The lightest shade corresponds to ρ < 1, the middle
shade to 1≤ ρ ≤ 1.3 and the darkest shade corresponds to ρ > 1.3.

dimension, N5, at fixed β4 = 2.6 and β5 = 0.95. At N5 = 4, this point lies within the ρ < 1 region
of Figure 3 and has a value ρ ≈ 0.85. However, as N5 is increased it is clear that ρ takes on
a Standard Model-like value, which is given by the orange dashing in the figure. Since we find
that the location of the phase transition becomes N5 independent for N5 > 4, the region of Standard
Model-like parameter space increases with N5. This will be an important feature when constructing
lines of constant physics; since we find only first order phase transitions, we expect that this theory
can only be treated as an effective one and hence, we must find a region of parameter space that
scales appropriately with the cut-off while keeping the physics constant.

The right panel of Figure 4 shows the N5 dependence, in units of the radius of the extra di-
mension, of the Z boson mass and its excitations Z′ and Z′′ (where we could robustly determine
them). It is clear that we see a 1/N5 behaviour of each particle and that the excitations behave like
a Kaluza-Klein tower, that is, that excitations mKK

i+1 appear at an energy scale 1/R higher than mKK
i .

3.2 Dimensional Reduction

Extra-dimensional models are only viable if the extra dimensions are hidden at energy scales
of the Standard Model. We are therefore only interested in regions of parameter space that di-
mensionally reduce to a four-dimensional Standard Model-like Higgs sector. By determining the
potential between a pair of static charges of the respective gauge group within layers orthogonal to
the fifth dimension, not only can we determine the dimensionality of the system but we can also
determine the dynamics of the system. As described in [7], we fit different potential shapes to our
extracted potential. Within the Higgs phase, these shapes include 4-D Yukawa, 5-D Yukawa, 4-D
Coulomb and 5-D Coulomb.

For isotropic couplings, where we find that the mass of the Z is always heavier than that of
the Higgs, we find no evidence of dimensional reduction and find that the potential determined on
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Figure 4: The left panel shows the ratio of Higgs to Z boson masses ρ for various values of N5 for two sets of fixed
inverse gauge couplings {β4,β5} = {2.6,0.95},{3.0,3.0}. The right panel shows the N5 dependence of the Z channel
in units of the radius of the extra dimension for the first set of couplings. The orange dashing in the left panel is the
Standard Model value of ρ , whereas the dashed lines in the right panel show where Kaulza-Klein excitations would
appear.

each hyperplane can only be described by a 5-D Yukawa form. However, in the region where we
find a Standard Model-like spectrum we find dimensional reduction via localisation on the U(1)
boundary hyperplanes of the orbifold. The left panel of Figure 5 shows fits of different potential
types to our extracted potential on the four-dimensional boundary (n5 = 0) hyperplane for β4 = 2.1
and β5 = 1.075. It is clear that the favoured fit is of 4-D Yukawa type; the other fits have χ2 per
degree of freedom values at least an order of magnitude higher than that of the 4-D Yukawa. In
the right panel we show fits to the extracted potential on the middle (n5 = 2) four-dimensional
hyperplane of the orbifold. Here we see that only a 5-D Yukawa fit is possible and again the other
fits have χ2/d.o.f values at least an order of magnitude higher. This behaviour is identical on all
bulk hyperplanes.

One consistency check that can be preformed is to measure the mass of the Z boson obtained
from the fit to the 4-D Yukawa potential and compare it to the value obtained independently in
our spectroscopic calculation; a differing value would suggest that the fit is not optimal while a
matching value confirms that the fit to the potential is correctly described. The value in lattice
units obtained from the spectroscopic calculation is a4mz = 0.268(3) and the value obtained from
the 4-D Yukawa fit is a4mz = 0.26. This remarkable agreement confirms the dimensionality of the
boundary to be four, implying dimensional reduction of the system via localisation.

4. Conclusions and Outlook

We have demonstrated that a five-dimensional SU(2) Gauge-Higgs Unification scenario em-
bedded within an orbifold geometry possesses a large region of parameter space that dimensionally
reduces via localisation and exhibits a Standard Model-like ratio of Higgs to Z boson masses. We
also find a Z′ particle present in the spectrum at the scale of the extra dimension. Our next step is to
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Figure 5: The left (right) panel shows fits to the potential determined on the n5 = 0 boundary (n5 = 2 bulk) hyperplane
orthogonal to the extra dimension for {β4,β5}= {2.1,1.075}.

construct lines of constant physics within the Standard Model-like parameter space. Work in this
direction has already begun.

Encouraged by the results of this study, we plan an exploration into larger models that contain
all the degrees of freedom necessary for the Standard Model Higgs sector, namely an SU(3) theory
which breaks to SU(2)×U(1) on the boundary.
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